extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C2×C3⋊S3) = C2×C32⋊S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C2×C6 | 18 | 3 | (C2xC6).1(C2xC3:S3) | 432,538 |
(C2×C6).2(C2×C3⋊S3) = C2×C9⋊S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C2×C6 | 54 | 6+ | (C2xC6).2(C2xC3:S3) | 432,536 |
(C2×C6).3(C2×C3⋊S3) = C2×C32.3S4 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C2×C6 | 54 | | (C2xC6).3(C2xC3:S3) | 432,537 |
(C2×C6).4(C2×C3⋊S3) = D4×C9⋊S3 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C6 | 108 | | (C2xC6).4(C2xC3:S3) | 432,388 |
(C2×C6).5(C2×C3⋊S3) = C36.27D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C6 | 216 | | (C2xC6).5(C2xC3:S3) | 432,389 |
(C2×C6).6(C2×C3⋊S3) = C62.91D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).6(C2xC3:S3) | 432,676 |
(C2×C6).7(C2×C3⋊S3) = C62.93D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).7(C2xC3:S3) | 432,678 |
(C2×C6).8(C2×C3⋊S3) = C62.100D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C6 | 216 | | (C2xC6).8(C2xC3:S3) | 432,725 |
(C2×C6).9(C2×C3⋊S3) = D4×He3⋊C2 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).9(C2xC3:S3) | 432,390 |
(C2×C6).10(C2×C3⋊S3) = C62.16D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).10(C2xC3:S3) | 432,391 |
(C2×C6).11(C2×C3⋊S3) = C3×C12.D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).11(C2xC3:S3) | 432,715 |
(C2×C6).12(C2×C3⋊S3) = Dic3×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).12(C2xC3:S3) | 432,448 |
(C2×C6).13(C2×C3⋊S3) = C62.77D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).13(C2xC3:S3) | 432,449 |
(C2×C6).14(C2×C3⋊S3) = C62.78D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).14(C2xC3:S3) | 432,450 |
(C2×C6).15(C2×C3⋊S3) = C62.79D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).15(C2xC3:S3) | 432,451 |
(C2×C6).16(C2×C3⋊S3) = C62.80D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).16(C2xC3:S3) | 432,452 |
(C2×C6).17(C2×C3⋊S3) = C62.81D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).17(C2xC3:S3) | 432,453 |
(C2×C6).18(C2×C3⋊S3) = C62.82D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).18(C2xC3:S3) | 432,454 |
(C2×C6).19(C2×C3⋊S3) = C2×S3×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).19(C2xC3:S3) | 432,674 |
(C2×C6).20(C2×C3⋊S3) = C62.90D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).20(C2xC3:S3) | 432,675 |
(C2×C6).21(C2×C3⋊S3) = C2×Dic3×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).21(C2xC3:S3) | 432,677 |
(C2×C6).22(C2×C3⋊S3) = C2×C33⋊8(C2×C4) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).22(C2xC3:S3) | 432,679 |
(C2×C6).23(C2×C3⋊S3) = C2×C33⋊6D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).23(C2xC3:S3) | 432,680 |
(C2×C6).24(C2×C3⋊S3) = C2×C33⋊7D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).24(C2xC3:S3) | 432,681 |
(C2×C6).25(C2×C3⋊S3) = C2×C33⋊8D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).25(C2xC3:S3) | 432,682 |
(C2×C6).26(C2×C3⋊S3) = C2×C33⋊4Q8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).26(C2xC3:S3) | 432,683 |
(C2×C6).27(C2×C3⋊S3) = C62.47D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).27(C2xC3:S3) | 432,387 |
(C2×C6).28(C2×C3⋊S3) = C3×C12.59D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).28(C2xC3:S3) | 432,713 |
(C2×C6).29(C2×C3⋊S3) = C4×C9⋊Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).29(C2xC3:S3) | 432,180 |
(C2×C6).30(C2×C3⋊S3) = C6.Dic18 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).30(C2xC3:S3) | 432,181 |
(C2×C6).31(C2×C3⋊S3) = C36⋊Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).31(C2xC3:S3) | 432,182 |
(C2×C6).32(C2×C3⋊S3) = C6.11D36 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).32(C2xC3:S3) | 432,183 |
(C2×C6).33(C2×C3⋊S3) = C62.127D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).33(C2xC3:S3) | 432,198 |
(C2×C6).34(C2×C3⋊S3) = C2×C12.D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).34(C2xC3:S3) | 432,380 |
(C2×C6).35(C2×C3⋊S3) = C2×C4×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).35(C2xC3:S3) | 432,381 |
(C2×C6).36(C2×C3⋊S3) = C2×C36⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).36(C2xC3:S3) | 432,382 |
(C2×C6).37(C2×C3⋊S3) = C36.70D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).37(C2xC3:S3) | 432,383 |
(C2×C6).38(C2×C3⋊S3) = C22×C9⋊Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).38(C2xC3:S3) | 432,396 |
(C2×C6).39(C2×C3⋊S3) = C2×C6.D18 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).39(C2xC3:S3) | 432,397 |
(C2×C6).40(C2×C3⋊S3) = C4×C33⋊5C4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).40(C2xC3:S3) | 432,503 |
(C2×C6).41(C2×C3⋊S3) = C62.146D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).41(C2xC3:S3) | 432,504 |
(C2×C6).42(C2×C3⋊S3) = C62.147D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).42(C2xC3:S3) | 432,505 |
(C2×C6).43(C2×C3⋊S3) = C62.148D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).43(C2xC3:S3) | 432,506 |
(C2×C6).44(C2×C3⋊S3) = C63.C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).44(C2xC3:S3) | 432,511 |
(C2×C6).45(C2×C3⋊S3) = C23×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).45(C2xC3:S3) | 432,560 |
(C2×C6).46(C2×C3⋊S3) = C2×C33⋊8Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).46(C2xC3:S3) | 432,720 |
(C2×C6).47(C2×C3⋊S3) = C2×C4×C33⋊C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).47(C2xC3:S3) | 432,721 |
(C2×C6).48(C2×C3⋊S3) = C2×C33⋊12D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).48(C2xC3:S3) | 432,722 |
(C2×C6).49(C2×C3⋊S3) = C62.160D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).49(C2xC3:S3) | 432,723 |
(C2×C6).50(C2×C3⋊S3) = C22×C33⋊5C4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).50(C2xC3:S3) | 432,728 |
(C2×C6).51(C2×C3⋊S3) = C4×He3⋊3C4 | central extension (φ=1) | 144 | | (C2xC6).51(C2xC3:S3) | 432,186 |
(C2×C6).52(C2×C3⋊S3) = C62.29D6 | central extension (φ=1) | 144 | | (C2xC6).52(C2xC3:S3) | 432,187 |
(C2×C6).53(C2×C3⋊S3) = C62.30D6 | central extension (φ=1) | 144 | | (C2xC6).53(C2xC3:S3) | 432,188 |
(C2×C6).54(C2×C3⋊S3) = C62.31D6 | central extension (φ=1) | 72 | | (C2xC6).54(C2xC3:S3) | 432,189 |
(C2×C6).55(C2×C3⋊S3) = C62⋊4Dic3 | central extension (φ=1) | 72 | | (C2xC6).55(C2xC3:S3) | 432,199 |
(C2×C6).56(C2×C3⋊S3) = C2×He3⋊4Q8 | central extension (φ=1) | 144 | | (C2xC6).56(C2xC3:S3) | 432,384 |
(C2×C6).57(C2×C3⋊S3) = C2×C4×He3⋊C2 | central extension (φ=1) | 72 | | (C2xC6).57(C2xC3:S3) | 432,385 |
(C2×C6).58(C2×C3⋊S3) = C2×He3⋊5D4 | central extension (φ=1) | 72 | | (C2xC6).58(C2xC3:S3) | 432,386 |
(C2×C6).59(C2×C3⋊S3) = C22×He3⋊3C4 | central extension (φ=1) | 144 | | (C2xC6).59(C2xC3:S3) | 432,398 |
(C2×C6).60(C2×C3⋊S3) = C2×He3⋊7D4 | central extension (φ=1) | 72 | | (C2xC6).60(C2xC3:S3) | 432,399 |
(C2×C6).61(C2×C3⋊S3) = C12×C3⋊Dic3 | central extension (φ=1) | 144 | | (C2xC6).61(C2xC3:S3) | 432,487 |
(C2×C6).62(C2×C3⋊S3) = C3×C6.Dic6 | central extension (φ=1) | 144 | | (C2xC6).62(C2xC3:S3) | 432,488 |
(C2×C6).63(C2×C3⋊S3) = C3×C12⋊Dic3 | central extension (φ=1) | 144 | | (C2xC6).63(C2xC3:S3) | 432,489 |
(C2×C6).64(C2×C3⋊S3) = C3×C6.11D12 | central extension (φ=1) | 144 | | (C2xC6).64(C2xC3:S3) | 432,490 |
(C2×C6).65(C2×C3⋊S3) = C3×C62⋊5C4 | central extension (φ=1) | 72 | | (C2xC6).65(C2xC3:S3) | 432,495 |
(C2×C6).66(C2×C3⋊S3) = C23×He3⋊C2 | central extension (φ=1) | 72 | | (C2xC6).66(C2xC3:S3) | 432,561 |
(C2×C6).67(C2×C3⋊S3) = C6×C32⋊4Q8 | central extension (φ=1) | 144 | | (C2xC6).67(C2xC3:S3) | 432,710 |
(C2×C6).68(C2×C3⋊S3) = C3⋊S3×C2×C12 | central extension (φ=1) | 144 | | (C2xC6).68(C2xC3:S3) | 432,711 |
(C2×C6).69(C2×C3⋊S3) = C6×C12⋊S3 | central extension (φ=1) | 144 | | (C2xC6).69(C2xC3:S3) | 432,712 |
(C2×C6).70(C2×C3⋊S3) = C2×C6×C3⋊Dic3 | central extension (φ=1) | 144 | | (C2xC6).70(C2xC3:S3) | 432,718 |