extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3⋊D12) = D36.S3 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | 4- | C6.1(C3:D12) | 432,62 |
C6.2(C3⋊D12) = C6.D36 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 72 | 4+ | C6.2(C3:D12) | 432,63 |
C6.3(C3⋊D12) = C3⋊D72 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 72 | 4+ | C6.3(C3:D12) | 432,64 |
C6.4(C3⋊D12) = C3⋊Dic36 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | 4- | C6.4(C3:D12) | 432,65 |
C6.5(C3⋊D12) = Dic3⋊Dic9 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.5(C3:D12) | 432,90 |
C6.6(C3⋊D12) = D18⋊Dic3 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.6(C3:D12) | 432,91 |
C6.7(C3⋊D12) = C2×C3⋊D36 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.7(C3:D12) | 432,307 |
C6.8(C3⋊D12) = C33⋊8D8 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.8(C3:D12) | 432,438 |
C6.9(C3⋊D12) = C33⋊16SD16 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.9(C3:D12) | 432,443 |
C6.10(C3⋊D12) = C33⋊17SD16 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 72 | | C6.10(C3:D12) | 432,444 |
C6.11(C3⋊D12) = C33⋊8Q16 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.11(C3:D12) | 432,447 |
C6.12(C3⋊D12) = C62.78D6 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.12(C3:D12) | 432,450 |
C6.13(C3⋊D12) = C62.80D6 | φ: C3⋊D12/C3×Dic3 → C2 ⊆ Aut C6 | 144 | | C6.13(C3:D12) | 432,452 |
C6.14(C3⋊D12) = C9⋊D24 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.14(C3:D12) | 432,69 |
C6.15(C3⋊D12) = C36.D6 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | 4- | C6.15(C3:D12) | 432,71 |
C6.16(C3⋊D12) = C18.D12 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.16(C3:D12) | 432,73 |
C6.17(C3⋊D12) = C9⋊Dic12 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | 4- | C6.17(C3:D12) | 432,75 |
C6.18(C3⋊D12) = Dic9⋊Dic3 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.18(C3:D12) | 432,88 |
C6.19(C3⋊D12) = C6.18D36 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | | C6.19(C3:D12) | 432,92 |
C6.20(C3⋊D12) = D6⋊Dic9 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.20(C3:D12) | 432,93 |
C6.21(C3⋊D12) = C2×C9⋊D12 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | | C6.21(C3:D12) | 432,312 |
C6.22(C3⋊D12) = C33⋊7D8 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | | C6.22(C3:D12) | 432,437 |
C6.23(C3⋊D12) = C33⋊14SD16 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.23(C3:D12) | 432,441 |
C6.24(C3⋊D12) = C33⋊15SD16 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | | C6.24(C3:D12) | 432,442 |
C6.25(C3⋊D12) = C33⋊7Q16 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.25(C3:D12) | 432,446 |
C6.26(C3⋊D12) = C62.77D6 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.26(C3:D12) | 432,449 |
C6.27(C3⋊D12) = C62.79D6 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 72 | | C6.27(C3:D12) | 432,451 |
C6.28(C3⋊D12) = C62.82D6 | φ: C3⋊D12/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.28(C3:D12) | 432,454 |
C6.29(C3⋊D12) = He3⋊3D8 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | 12+ | C6.29(C3:D12) | 432,83 |
C6.30(C3⋊D12) = He3⋊4SD16 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | 12- | C6.30(C3:D12) | 432,84 |
C6.31(C3⋊D12) = He3⋊5SD16 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | 12+ | C6.31(C3:D12) | 432,85 |
C6.32(C3⋊D12) = He3⋊3Q16 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | 12- | C6.32(C3:D12) | 432,86 |
C6.33(C3⋊D12) = C62.D6 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.33(C3:D12) | 432,95 |
C6.34(C3⋊D12) = C62.4D6 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.34(C3:D12) | 432,97 |
C6.35(C3⋊D12) = C62.5D6 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.35(C3:D12) | 432,98 |
C6.36(C3⋊D12) = C2×He3⋊3D4 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.36(C3:D12) | 432,322 |
C6.37(C3⋊D12) = C33⋊9D8 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.37(C3:D12) | 432,457 |
C6.38(C3⋊D12) = C33⋊18SD16 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.38(C3:D12) | 432,458 |
C6.39(C3⋊D12) = C33⋊9Q16 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.39(C3:D12) | 432,459 |
C6.40(C3⋊D12) = C62.84D6 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | | C6.40(C3:D12) | 432,461 |
C6.41(C3⋊D12) = C62.85D6 | φ: C3⋊D12/C2×C3⋊S3 → C2 ⊆ Aut C6 | 48 | | C6.41(C3:D12) | 432,462 |
C6.42(C3⋊D12) = C3×C3⋊D24 | central extension (φ=1) | 48 | 4 | C6.42(C3:D12) | 432,419 |
C6.43(C3⋊D12) = C3×D12.S3 | central extension (φ=1) | 48 | 4 | C6.43(C3:D12) | 432,421 |
C6.44(C3⋊D12) = C3×C32⋊5SD16 | central extension (φ=1) | 48 | 4 | C6.44(C3:D12) | 432,422 |
C6.45(C3⋊D12) = C3×C32⋊3Q16 | central extension (φ=1) | 48 | 4 | C6.45(C3:D12) | 432,424 |
C6.46(C3⋊D12) = C3×D6⋊Dic3 | central extension (φ=1) | 48 | | C6.46(C3:D12) | 432,426 |
C6.47(C3⋊D12) = C3×C6.D12 | central extension (φ=1) | 48 | | C6.47(C3:D12) | 432,427 |
C6.48(C3⋊D12) = C3×Dic3⋊Dic3 | central extension (φ=1) | 48 | | C6.48(C3:D12) | 432,428 |