Extensions 1→N→G→Q→1 with N=C6 and Q=C3⋊D12

Direct product G=N×Q with N=C6 and Q=C3⋊D12
dρLabelID
C6×C3⋊D1248C6xC3:D12432,656

Semidirect products G=N:Q with N=C6 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C61(C3⋊D12) = C2×C338D4φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C672C6:1(C3:D12)432,682
C62(C3⋊D12) = C2×C337D4φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6:2(C3:D12)432,681
C63(C3⋊D12) = C2×C339D4φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C648C6:3(C3:D12)432,694

Non-split extensions G=N.Q with N=C6 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C6.1(C3⋊D12) = D36.S3φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C61444-C6.1(C3:D12)432,62
C6.2(C3⋊D12) = C6.D36φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6724+C6.2(C3:D12)432,63
C6.3(C3⋊D12) = C3⋊D72φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6724+C6.3(C3:D12)432,64
C6.4(C3⋊D12) = C3⋊Dic36φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C61444-C6.4(C3:D12)432,65
C6.5(C3⋊D12) = Dic3⋊Dic9φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.5(C3:D12)432,90
C6.6(C3⋊D12) = D18⋊Dic3φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.6(C3:D12)432,91
C6.7(C3⋊D12) = C2×C3⋊D36φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C672C6.7(C3:D12)432,307
C6.8(C3⋊D12) = C338D8φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C672C6.8(C3:D12)432,438
C6.9(C3⋊D12) = C3316SD16φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.9(C3:D12)432,443
C6.10(C3⋊D12) = C3317SD16φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C672C6.10(C3:D12)432,444
C6.11(C3⋊D12) = C338Q16φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.11(C3:D12)432,447
C6.12(C3⋊D12) = C62.78D6φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.12(C3:D12)432,450
C6.13(C3⋊D12) = C62.80D6φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C6144C6.13(C3:D12)432,452
C6.14(C3⋊D12) = C9⋊D24φ: C3⋊D12/S3×C6C2 ⊆ Aut C6724+C6.14(C3:D12)432,69
C6.15(C3⋊D12) = C36.D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C61444-C6.15(C3:D12)432,71
C6.16(C3⋊D12) = C18.D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C6724+C6.16(C3:D12)432,73
C6.17(C3⋊D12) = C9⋊Dic12φ: C3⋊D12/S3×C6C2 ⊆ Aut C61444-C6.17(C3:D12)432,75
C6.18(C3⋊D12) = Dic9⋊Dic3φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.18(C3:D12)432,88
C6.19(C3⋊D12) = C6.18D36φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6.19(C3:D12)432,92
C6.20(C3⋊D12) = D6⋊Dic9φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.20(C3:D12)432,93
C6.21(C3⋊D12) = C2×C9⋊D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6.21(C3:D12)432,312
C6.22(C3⋊D12) = C337D8φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6.22(C3:D12)432,437
C6.23(C3⋊D12) = C3314SD16φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.23(C3:D12)432,441
C6.24(C3⋊D12) = C3315SD16φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6.24(C3:D12)432,442
C6.25(C3⋊D12) = C337Q16φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.25(C3:D12)432,446
C6.26(C3⋊D12) = C62.77D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.26(C3:D12)432,449
C6.27(C3⋊D12) = C62.79D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C672C6.27(C3:D12)432,451
C6.28(C3⋊D12) = C62.82D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C6144C6.28(C3:D12)432,454
C6.29(C3⋊D12) = He33D8φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C67212+C6.29(C3:D12)432,83
C6.30(C3⋊D12) = He34SD16φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C67212-C6.30(C3:D12)432,84
C6.31(C3⋊D12) = He35SD16φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C67212+C6.31(C3:D12)432,85
C6.32(C3⋊D12) = He33Q16φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C614412-C6.32(C3:D12)432,86
C6.33(C3⋊D12) = C62.D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C6144C6.33(C3:D12)432,95
C6.34(C3⋊D12) = C62.4D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C672C6.34(C3:D12)432,97
C6.35(C3⋊D12) = C62.5D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C672C6.35(C3:D12)432,98
C6.36(C3⋊D12) = C2×He33D4φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C672C6.36(C3:D12)432,322
C6.37(C3⋊D12) = C339D8φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C6484C6.37(C3:D12)432,457
C6.38(C3⋊D12) = C3318SD16φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C6484C6.38(C3:D12)432,458
C6.39(C3⋊D12) = C339Q16φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C6484C6.39(C3:D12)432,459
C6.40(C3⋊D12) = C62.84D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C648C6.40(C3:D12)432,461
C6.41(C3⋊D12) = C62.85D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C648C6.41(C3:D12)432,462
C6.42(C3⋊D12) = C3×C3⋊D24central extension (φ=1)484C6.42(C3:D12)432,419
C6.43(C3⋊D12) = C3×D12.S3central extension (φ=1)484C6.43(C3:D12)432,421
C6.44(C3⋊D12) = C3×C325SD16central extension (φ=1)484C6.44(C3:D12)432,422
C6.45(C3⋊D12) = C3×C323Q16central extension (φ=1)484C6.45(C3:D12)432,424
C6.46(C3⋊D12) = C3×D6⋊Dic3central extension (φ=1)48C6.46(C3:D12)432,426
C6.47(C3⋊D12) = C3×C6.D12central extension (φ=1)48C6.47(C3:D12)432,427
C6.48(C3⋊D12) = C3×Dic3⋊Dic3central extension (φ=1)48C6.48(C3:D12)432,428

׿
×
𝔽