non-abelian, supersoluble, monomial
Aliases: He3⋊4SD16, C12.10S32, (C3×C12).5D6, (C3×C6).2D12, He3⋊3C8⋊2C2, C32⋊4C8⋊2S3, He3⋊3Q8⋊2C2, C32⋊4Q8⋊2S3, (C2×He3).10D4, He3⋊5D4.1C2, C4.2(C32⋊D6), C32⋊2(C24⋊C2), C2.5(He3⋊3D4), (C4×He3).5C22, C6.30(C3⋊D12), C32⋊3(Q8⋊2S3), C3.3(C32⋊5SD16), (C3×C6).5(C3⋊D4), SmallGroup(432,84)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊4SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d3 >
Subgroups: 559 in 86 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C24⋊C2, D4.S3, Q8⋊2S3, He3⋊C2, C2×He3, C3×C3⋊C8, C32⋊4C8, C3×Dic6, C3×D12, C32⋊4Q8, C32⋊C12, C4×He3, C2×He3⋊C2, Dic6⋊S3, D12.S3, He3⋊3C8, He3⋊3Q8, He3⋊5D4, He3⋊4SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, D12, C3⋊D4, S32, C24⋊C2, Q8⋊2S3, C3⋊D12, C32⋊D6, C32⋊5SD16, He3⋊3D4, He3⋊4SD16
Character table of He3⋊4SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 6 | 6 | 12 | 2 | 36 | 2 | 6 | 6 | 12 | 36 | 36 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | 2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -2 | 1 | 0 | 0 | √-2 | -√-2 | 0 | -√3 | √3 | √3 | -√3 | 0 | 0 | 0 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | complex lifted from C24⋊C2 |
ρ17 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -2 | 1 | 0 | 0 | -√-2 | √-2 | 0 | √3 | -√3 | -√3 | √3 | 0 | 0 | 0 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | complex lifted from C24⋊C2 |
ρ18 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -2 | 1 | 0 | 0 | -√-2 | √-2 | 0 | -√3 | √3 | √3 | -√3 | 0 | 0 | 0 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | complex lifted from C24⋊C2 |
ρ19 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -2 | 1 | 0 | 0 | √-2 | -√-2 | 0 | √3 | -√3 | -√3 | √3 | 0 | 0 | 0 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | complex lifted from C24⋊C2 |
ρ20 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | 4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ22 | 4 | -4 | 0 | 4 | -2 | 4 | -2 | 0 | 0 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ23 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊5SD16 |
ρ24 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊5SD16 |
ρ25 | 6 | 6 | 2 | -3 | 0 | 0 | 0 | 6 | 0 | -3 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ26 | 6 | 6 | -2 | -3 | 0 | 0 | 0 | 6 | 0 | -3 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊D6 |
ρ27 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | -√-3 | √-3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ28 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | √-3 | -√-3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊3D4 |
ρ29 | 12 | -12 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 68 34)(2 69 35)(3 70 36)(4 71 37)(5 72 38)(6 65 39)(7 66 40)(8 67 33)(9 28 44)(10 29 45)(11 30 46)(12 31 47)(13 32 48)(14 25 41)(15 26 42)(16 27 43)(17 60 54)(18 61 55)(19 62 56)(20 63 49)(21 64 50)(22 57 51)(23 58 52)(24 59 53)
(1 27 20)(2 21 28)(3 29 22)(4 23 30)(5 31 24)(6 17 32)(7 25 18)(8 19 26)(9 35 50)(10 51 36)(11 37 52)(12 53 38)(13 39 54)(14 55 40)(15 33 56)(16 49 34)(41 61 66)(42 67 62)(43 63 68)(44 69 64)(45 57 70)(46 71 58)(47 59 72)(48 65 60)
(9 50 35)(10 36 51)(11 52 37)(12 38 53)(13 54 39)(14 40 55)(15 56 33)(16 34 49)(41 61 66)(42 67 62)(43 63 68)(44 69 64)(45 57 70)(46 71 58)(47 59 72)(48 65 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 3)(2 6)(5 7)(9 48)(10 43)(11 46)(12 41)(13 44)(14 47)(15 42)(16 45)(17 21)(18 24)(20 22)(25 31)(27 29)(28 32)(33 67)(34 70)(35 65)(36 68)(37 71)(38 66)(39 69)(40 72)(49 57)(50 60)(51 63)(52 58)(53 61)(54 64)(55 59)(56 62)
G:=sub<Sym(72)| (1,68,34)(2,69,35)(3,70,36)(4,71,37)(5,72,38)(6,65,39)(7,66,40)(8,67,33)(9,28,44)(10,29,45)(11,30,46)(12,31,47)(13,32,48)(14,25,41)(15,26,42)(16,27,43)(17,60,54)(18,61,55)(19,62,56)(20,63,49)(21,64,50)(22,57,51)(23,58,52)(24,59,53), (1,27,20)(2,21,28)(3,29,22)(4,23,30)(5,31,24)(6,17,32)(7,25,18)(8,19,26)(9,35,50)(10,51,36)(11,37,52)(12,53,38)(13,39,54)(14,55,40)(15,33,56)(16,49,34)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,57,70)(46,71,58)(47,59,72)(48,65,60), (9,50,35)(10,36,51)(11,52,37)(12,38,53)(13,54,39)(14,40,55)(15,56,33)(16,34,49)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,57,70)(46,71,58)(47,59,72)(48,65,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,3)(2,6)(5,7)(9,48)(10,43)(11,46)(12,41)(13,44)(14,47)(15,42)(16,45)(17,21)(18,24)(20,22)(25,31)(27,29)(28,32)(33,67)(34,70)(35,65)(36,68)(37,71)(38,66)(39,69)(40,72)(49,57)(50,60)(51,63)(52,58)(53,61)(54,64)(55,59)(56,62)>;
G:=Group( (1,68,34)(2,69,35)(3,70,36)(4,71,37)(5,72,38)(6,65,39)(7,66,40)(8,67,33)(9,28,44)(10,29,45)(11,30,46)(12,31,47)(13,32,48)(14,25,41)(15,26,42)(16,27,43)(17,60,54)(18,61,55)(19,62,56)(20,63,49)(21,64,50)(22,57,51)(23,58,52)(24,59,53), (1,27,20)(2,21,28)(3,29,22)(4,23,30)(5,31,24)(6,17,32)(7,25,18)(8,19,26)(9,35,50)(10,51,36)(11,37,52)(12,53,38)(13,39,54)(14,55,40)(15,33,56)(16,49,34)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,57,70)(46,71,58)(47,59,72)(48,65,60), (9,50,35)(10,36,51)(11,52,37)(12,38,53)(13,54,39)(14,40,55)(15,56,33)(16,34,49)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,57,70)(46,71,58)(47,59,72)(48,65,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,3)(2,6)(5,7)(9,48)(10,43)(11,46)(12,41)(13,44)(14,47)(15,42)(16,45)(17,21)(18,24)(20,22)(25,31)(27,29)(28,32)(33,67)(34,70)(35,65)(36,68)(37,71)(38,66)(39,69)(40,72)(49,57)(50,60)(51,63)(52,58)(53,61)(54,64)(55,59)(56,62) );
G=PermutationGroup([[(1,68,34),(2,69,35),(3,70,36),(4,71,37),(5,72,38),(6,65,39),(7,66,40),(8,67,33),(9,28,44),(10,29,45),(11,30,46),(12,31,47),(13,32,48),(14,25,41),(15,26,42),(16,27,43),(17,60,54),(18,61,55),(19,62,56),(20,63,49),(21,64,50),(22,57,51),(23,58,52),(24,59,53)], [(1,27,20),(2,21,28),(3,29,22),(4,23,30),(5,31,24),(6,17,32),(7,25,18),(8,19,26),(9,35,50),(10,51,36),(11,37,52),(12,53,38),(13,39,54),(14,55,40),(15,33,56),(16,49,34),(41,61,66),(42,67,62),(43,63,68),(44,69,64),(45,57,70),(46,71,58),(47,59,72),(48,65,60)], [(9,50,35),(10,36,51),(11,52,37),(12,38,53),(13,54,39),(14,40,55),(15,56,33),(16,34,49),(41,61,66),(42,67,62),(43,63,68),(44,69,64),(45,57,70),(46,71,58),(47,59,72),(48,65,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,3),(2,6),(5,7),(9,48),(10,43),(11,46),(12,41),(13,44),(14,47),(15,42),(16,45),(17,21),(18,24),(20,22),(25,31),(27,29),(28,32),(33,67),(34,70),(35,65),(36,68),(37,71),(38,66),(39,69),(40,72),(49,57),(50,60),(51,63),(52,58),(53,61),(54,64),(55,59),(56,62)]])
Matrix representation of He3⋊4SD16 ►in GL10(𝔽73)
72 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 71 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 72 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 72 | 72 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 72 | 72 |
0 | 36 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 |
36 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 68 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 68 | 0 | 55 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 55 | 23 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 68 | 0 | 0 | 0 | 55 | 5 |
0 | 0 | 0 | 0 | 50 | 55 | 0 | 0 | 23 | 18 |
0 | 59 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
59 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 66 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
66 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(10,GF(73))| [72,0,72,0,0,0,0,0,0,0,0,72,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,71,72,72,72,72,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,72,0,72,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[0,36,0,11,0,0,0,0,0,0,36,0,11,0,0,0,0,0,0,0,0,62,0,25,0,0,0,0,0,0,62,0,25,0,0,0,0,0,0,0,0,0,0,0,68,50,68,50,68,50,0,0,0,0,55,5,0,55,0,55,0,0,0,0,0,0,55,23,0,0,0,0,0,0,0,0,5,18,0,0,0,0,0,0,0,0,0,0,55,23,0,0,0,0,0,0,0,0,5,18],[0,59,0,66,0,0,0,0,0,0,59,0,66,0,0,0,0,0,0,0,0,7,0,14,0,0,0,0,0,0,7,0,14,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0] >;
He3⋊4SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_4{\rm SD}_{16}
% in TeX
G:=Group("He3:4SD16");
// GroupNames label
G:=SmallGroup(432,84);
// by ID
G=gap.SmallGroup(432,84);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,36,254,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^3>;
// generators/relations
Export