Extensions 1→N→G→Q→1 with N=C9 and Q=C6×D4

Direct product G=N×Q with N=C9 and Q=C6×D4

Semidirect products G=N:Q with N=C9 and Q=C6×D4
extensionφ:Q→Aut NdρLabelID
C91(C6×D4) = C2×D36⋊C3φ: C6×D4/C2×C4C6 ⊆ Aut C972C9:1(C6xD4)432,354
C92(C6×D4) = D4×C9⋊C6φ: C6×D4/D4C6 ⊆ Aut C93612+C9:2(C6xD4)432,362
C93(C6×D4) = C2×Dic9⋊C6φ: C6×D4/C23C6 ⊆ Aut C972C9:3(C6xD4)432,379
C94(C6×D4) = C2×D4×3- 1+2φ: C6×D4/C2×D4C3 ⊆ Aut C972C9:4(C6xD4)432,405
C95(C6×D4) = C6×D36φ: C6×D4/C2×C12C2 ⊆ Aut C9144C9:5(C6xD4)432,343
C96(C6×D4) = C3×D4×D9φ: C6×D4/C3×D4C2 ⊆ Aut C9724C9:6(C6xD4)432,356
C97(C6×D4) = C6×C9⋊D4φ: C6×D4/C22×C6C2 ⊆ Aut C972C9:7(C6xD4)432,374

Non-split extensions G=N.Q with N=C9 and Q=C6×D4
extensionφ:Q→Aut NdρLabelID
C9.(C6×D4) = D4×C54central extension (φ=1)216C9.(C6xD4)432,54