Copied to
clipboard

G = C2×Dic9⋊C6order 432 = 24·33

Direct product of C2 and Dic9⋊C6

direct product, metabelian, supersoluble, monomial

Aliases: C2×Dic9⋊C6, C62.43D6, C93(C6×D4), C182(C3×D4), C9⋊D44C6, D183(C2×C6), C9⋊C122C22, C233(C9⋊C6), (C22×C18)⋊2C6, Dic92(C2×C6), (C2×Dic9)⋊4C6, (C22×D9)⋊3C6, (C2×C62).12S3, C18.10(C22×C6), 3- 1+23(C2×D4), (C2×3- 1+2)⋊2D4, (C23×3- 1+2)⋊1C2, (C2×3- 1+2).10C23, (C22×3- 1+2)⋊2C22, (C2×C9⋊D4)⋊C3, C6.48(S3×C2×C6), (C2×C9⋊C12)⋊4C2, (C2×C18)⋊4(C2×C6), C224(C2×C9⋊C6), C3.3(C6×C3⋊D4), C32.(C2×C3⋊D4), (C2×C9⋊C6)⋊3C22, (C22×C9⋊C6)⋊3C2, (C2×C6).66(S3×C6), C6.35(C3×C3⋊D4), C2.10(C22×C9⋊C6), (C3×C6).40(C3⋊D4), (C3×C6).38(C22×S3), (C22×C6).32(C3×S3), SmallGroup(432,379)

Series: Derived Chief Lower central Upper central

C1C18 — C2×Dic9⋊C6
C1C3C9C18C2×3- 1+2C2×C9⋊C6C22×C9⋊C6 — C2×Dic9⋊C6
C9C18 — C2×Dic9⋊C6
C1C22C23

Generators and relations for C2×Dic9⋊C6
 G = < a,b,c,d | a2=b18=d6=1, c2=b9, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b7, dcd-1=b9c >

Subgroups: 654 in 178 conjugacy classes, 62 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C18, C3×S3, C3×C6, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, 3- 1+2, Dic9, D18, D18, C2×C18, C2×C18, C2×C18, C3×Dic3, S3×C6, C62, C62, C62, C2×C3⋊D4, C6×D4, C9⋊C6, C2×3- 1+2, C2×3- 1+2, C2×3- 1+2, C2×Dic9, C9⋊D4, C22×D9, C22×C18, C22×C18, C6×Dic3, C3×C3⋊D4, S3×C2×C6, C2×C62, C9⋊C12, C2×C9⋊C6, C2×C9⋊C6, C22×3- 1+2, C22×3- 1+2, C22×3- 1+2, C2×C9⋊D4, C6×C3⋊D4, C2×C9⋊C12, Dic9⋊C6, C22×C9⋊C6, C23×3- 1+2, C2×Dic9⋊C6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, S3×C6, C2×C3⋊D4, C6×D4, C9⋊C6, C3×C3⋊D4, S3×C2×C6, C2×C9⋊C6, C6×C3⋊D4, Dic9⋊C6, C22×C9⋊C6, C2×Dic9⋊C6

Smallest permutation representation of C2×Dic9⋊C6
On 72 points
Generators in S72
(1 34)(2 35)(3 36)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 46 10 37)(2 45 11 54)(3 44 12 53)(4 43 13 52)(5 42 14 51)(6 41 15 50)(7 40 16 49)(8 39 17 48)(9 38 18 47)(19 61 28 70)(20 60 29 69)(21 59 30 68)(22 58 31 67)(23 57 32 66)(24 56 33 65)(25 55 34 64)(26 72 35 63)(27 71 36 62)
(1 34)(2 29 8 35 14 23)(3 24 15 36 9 30)(4 19)(5 32 11 20 17 26)(6 27 18 21 12 33)(7 22)(10 25)(13 28)(16 31)(37 64)(38 59 44 65 50 71)(39 72 51 66 45 60)(40 67)(41 62 47 68 53 56)(42 57 54 69 48 63)(43 70)(46 55)(49 58)(52 61)

G:=sub<Sym(72)| (1,34)(2,35)(3,36)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,46,10,37)(2,45,11,54)(3,44,12,53)(4,43,13,52)(5,42,14,51)(6,41,15,50)(7,40,16,49)(8,39,17,48)(9,38,18,47)(19,61,28,70)(20,60,29,69)(21,59,30,68)(22,58,31,67)(23,57,32,66)(24,56,33,65)(25,55,34,64)(26,72,35,63)(27,71,36,62), (1,34)(2,29,8,35,14,23)(3,24,15,36,9,30)(4,19)(5,32,11,20,17,26)(6,27,18,21,12,33)(7,22)(10,25)(13,28)(16,31)(37,64)(38,59,44,65,50,71)(39,72,51,66,45,60)(40,67)(41,62,47,68,53,56)(42,57,54,69,48,63)(43,70)(46,55)(49,58)(52,61)>;

G:=Group( (1,34)(2,35)(3,36)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,46,10,37)(2,45,11,54)(3,44,12,53)(4,43,13,52)(5,42,14,51)(6,41,15,50)(7,40,16,49)(8,39,17,48)(9,38,18,47)(19,61,28,70)(20,60,29,69)(21,59,30,68)(22,58,31,67)(23,57,32,66)(24,56,33,65)(25,55,34,64)(26,72,35,63)(27,71,36,62), (1,34)(2,29,8,35,14,23)(3,24,15,36,9,30)(4,19)(5,32,11,20,17,26)(6,27,18,21,12,33)(7,22)(10,25)(13,28)(16,31)(37,64)(38,59,44,65,50,71)(39,72,51,66,45,60)(40,67)(41,62,47,68,53,56)(42,57,54,69,48,63)(43,70)(46,55)(49,58)(52,61) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,46,10,37),(2,45,11,54),(3,44,12,53),(4,43,13,52),(5,42,14,51),(6,41,15,50),(7,40,16,49),(8,39,17,48),(9,38,18,47),(19,61,28,70),(20,60,29,69),(21,59,30,68),(22,58,31,67),(23,57,32,66),(24,56,33,65),(25,55,34,64),(26,72,35,63),(27,71,36,62)], [(1,34),(2,29,8,35,14,23),(3,24,15,36,9,30),(4,19),(5,32,11,20,17,26),(6,27,18,21,12,33),(7,22),(10,25),(13,28),(16,31),(37,64),(38,59,44,65,50,71),(39,72,51,66,45,60),(40,67),(41,62,47,68,53,56),(42,57,54,69,48,63),(43,70),(46,55),(49,58),(52,61)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B6A···6G6H···6M6N6O6P6Q6R6S6T6U9A9B9C12A12B12C12D18A···18U
order12222222333446···66···6666666669991212121218···18
size111122181823318182···23···3666618181818666181818186···6

62 irreducible representations

dim111111111122222222666
type++++++++++
imageC1C2C2C2C2C3C6C6C6C6S3D4D6C3×S3C3×D4C3⋊D4S3×C6C3×C3⋊D4C9⋊C6C2×C9⋊C6Dic9⋊C6
kernelC2×Dic9⋊C6C2×C9⋊C12Dic9⋊C6C22×C9⋊C6C23×3- 1+2C2×C9⋊D4C2×Dic9C9⋊D4C22×D9C22×C18C2×C62C2×3- 1+2C62C22×C6C18C3×C6C2×C6C6C23C22C2
# reps114112282212324468134

Matrix representation of C2×Dic9⋊C6 in GL8(𝔽37)

360000000
036000000
00100000
00010000
00001000
00000100
00000010
00000001
,
360000000
036000000
001190000
0002627000
002610000
001018182619
0013001100
000325102611
,
253000000
112000000
0034003500
00003323310
002303331835
00500300
0024111534726
000212713334
,
270000000
3110000000
00100000
0010260000
0036010000
0034003600
00150130110
00302212111027

G:=sub<GL(8,GF(37))| [36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,11,0,26,10,13,0,0,0,9,26,1,18,0,32,0,0,0,27,0,18,0,5,0,0,0,0,0,26,11,10,0,0,0,0,0,1,0,26,0,0,0,0,0,9,0,11],[25,1,0,0,0,0,0,0,3,12,0,0,0,0,0,0,0,0,34,0,2,5,24,0,0,0,0,0,30,0,11,21,0,0,0,33,33,0,15,27,0,0,35,23,31,3,34,1,0,0,0,31,8,0,7,33,0,0,0,0,35,0,26,34],[27,31,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,1,10,36,34,15,30,0,0,0,26,0,0,0,22,0,0,0,0,10,0,13,12,0,0,0,0,0,36,0,11,0,0,0,0,0,0,11,10,0,0,0,0,0,0,0,27] >;

C2×Dic9⋊C6 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_9\rtimes C_6
% in TeX

G:=Group("C2xDic9:C6");
// GroupNames label

G:=SmallGroup(432,379);
// by ID

G=gap.SmallGroup(432,379);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,590,10085,1034,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^18=d^6=1,c^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^7,d*c*d^-1=b^9*c>;
// generators/relations

׿
×
𝔽