Extensions 1→N→G→Q→1 with N=C6×Dic9 and Q=C2

Direct product G=N×Q with N=C6×Dic9 and Q=C2
dρLabelID
C2×C6×Dic9144C2xC6xDic9432,372

Semidirect products G=N:Q with N=C6×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic9)⋊1C2 = C6.18D36φ: C2/C1C2 ⊆ Out C6×Dic972(C6xDic9):1C2432,92
(C6×Dic9)⋊2C2 = D6⋊Dic9φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9):2C2432,93
(C6×Dic9)⋊3C2 = C3×D18⋊C4φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9):3C2432,134
(C6×Dic9)⋊4C2 = C3×C18.D4φ: C2/C1C2 ⊆ Out C6×Dic972(C6xDic9):4C2432,164
(C6×Dic9)⋊5C2 = C2×C18.D6φ: C2/C1C2 ⊆ Out C6×Dic972(C6xDic9):5C2432,306
(C6×Dic9)⋊6C2 = C2×S3×Dic9φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9):6C2432,308
(C6×Dic9)⋊7C2 = Dic3.D18φ: C2/C1C2 ⊆ Out C6×Dic9724(C6xDic9):7C2432,309
(C6×Dic9)⋊8C2 = C2×C9⋊D12φ: C2/C1C2 ⊆ Out C6×Dic972(C6xDic9):8C2432,312
(C6×Dic9)⋊9C2 = C3×D42D9φ: C2/C1C2 ⊆ Out C6×Dic9724(C6xDic9):9C2432,357
(C6×Dic9)⋊10C2 = C6×C9⋊D4φ: C2/C1C2 ⊆ Out C6×Dic972(C6xDic9):10C2432,374
(C6×Dic9)⋊11C2 = D9×C2×C12φ: trivial image144(C6xDic9):11C2432,342

Non-split extensions G=N.Q with N=C6×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic9).1C2 = Dic3×Dic9φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).1C2432,87
(C6×Dic9).2C2 = Dic9⋊Dic3φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).2C2432,88
(C6×Dic9).3C2 = C18.Dic6φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).3C2432,89
(C6×Dic9).4C2 = Dic3⋊Dic9φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).4C2432,90
(C6×Dic9).5C2 = C3×Dic9⋊C4φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).5C2432,129
(C6×Dic9).6C2 = C3×C4⋊Dic9φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).6C2432,130
(C6×Dic9).7C2 = C2×C9⋊Dic6φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).7C2432,303
(C6×Dic9).8C2 = C6×Dic18φ: C2/C1C2 ⊆ Out C6×Dic9144(C6xDic9).8C2432,340
(C6×Dic9).9C2 = C12×Dic9φ: trivial image144(C6xDic9).9C2432,128

׿
×
𝔽