direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C2×C28, C28⋊7(C22×C4), (C23×C28)⋊6C2, C23⋊5(C2×C28), (C2×C42)⋊7C14, (C23×C4)⋊5C14, C4⋊1(C22×C28), (C4×C28)⋊57C22, C42⋊16(C2×C14), C2.4(C23×C28), C24.33(C2×C14), C14.56(C23×C4), C22⋊1(C22×C28), C22.59(D4×C14), (C2×C14).335C24, (C2×C28).707C23, (C22×C28)⋊58C22, (C22×D4).13C14, C14.179(C22×D4), C22.8(C23×C14), (D4×C14).330C22, C23.28(C22×C14), (C23×C14).90C22, (C22×C14).252C23, (C2×C4×C28)⋊20C2, C2.3(D4×C2×C14), (C2×C4)⋊7(C2×C28), (C14×C4⋊C4)⋊52C2, (C2×C4⋊C4)⋊25C14, C4⋊C4⋊19(C2×C14), (C2×C28)⋊32(C2×C4), (D4×C2×C14).26C2, C2.2(C14×C4○D4), (C7×C4⋊C4)⋊76C22, (C2×C14)⋊5(C22×C4), (C2×C22⋊C4)⋊16C14, (C14×C22⋊C4)⋊36C2, C22⋊C4⋊17(C2×C14), (C22×C4)⋊16(C2×C14), (C22×C14)⋊13(C2×C4), (C2×D4).76(C2×C14), C14.221(C2×C4○D4), (C2×C14).681(C2×D4), C22.27(C7×C4○D4), (C7×C22⋊C4)⋊71C22, (C2×C4).54(C22×C14), (C2×C14).227(C4○D4), SmallGroup(448,1298)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 578 in 426 conjugacy classes, 274 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×8], C4 [×6], C22, C22 [×14], C22 [×24], C7, C2×C4 [×18], C2×C4 [×22], D4 [×16], C23, C23 [×12], C23 [×8], C14 [×3], C14 [×4], C14 [×8], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×3], C22×C4 [×10], C22×C4 [×8], C2×D4 [×12], C24 [×2], C28 [×8], C28 [×6], C2×C14, C2×C14 [×14], C2×C14 [×24], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C2×C28 [×18], C2×C28 [×22], C7×D4 [×16], C22×C14, C22×C14 [×12], C22×C14 [×8], C2×C4×D4, C4×C28 [×4], C7×C22⋊C4 [×8], C7×C4⋊C4 [×4], C22×C28 [×3], C22×C28 [×10], C22×C28 [×8], D4×C14 [×12], C23×C14 [×2], C2×C4×C28, C14×C22⋊C4 [×2], C14×C4⋊C4, D4×C28 [×8], C23×C28 [×2], D4×C2×C14, D4×C2×C28
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C7, C2×C4 [×28], D4 [×4], C23 [×15], C14 [×15], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C28 [×8], C2×C14 [×35], C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C2×C28 [×28], C7×D4 [×4], C22×C14 [×15], C2×C4×D4, C22×C28 [×14], D4×C14 [×6], C7×C4○D4 [×2], C23×C14, D4×C28 [×4], C23×C28, D4×C2×C14, C14×C4○D4, D4×C2×C28
Generators and relations
G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 60)(2 61)(3 62)(4 63)(5 64)(6 65)(7 66)(8 67)(9 68)(10 69)(11 70)(12 71)(13 72)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 80)(22 81)(23 82)(24 83)(25 84)(26 57)(27 58)(28 59)(29 183)(30 184)(31 185)(32 186)(33 187)(34 188)(35 189)(36 190)(37 191)(38 192)(39 193)(40 194)(41 195)(42 196)(43 169)(44 170)(45 171)(46 172)(47 173)(48 174)(49 175)(50 176)(51 177)(52 178)(53 179)(54 180)(55 181)(56 182)(85 158)(86 159)(87 160)(88 161)(89 162)(90 163)(91 164)(92 165)(93 166)(94 167)(95 168)(96 141)(97 142)(98 143)(99 144)(100 145)(101 146)(102 147)(103 148)(104 149)(105 150)(106 151)(107 152)(108 153)(109 154)(110 155)(111 156)(112 157)(113 200)(114 201)(115 202)(116 203)(117 204)(118 205)(119 206)(120 207)(121 208)(122 209)(123 210)(124 211)(125 212)(126 213)(127 214)(128 215)(129 216)(130 217)(131 218)(132 219)(133 220)(134 221)(135 222)(136 223)(137 224)(138 197)(139 198)(140 199)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 97 215 35)(2 98 216 36)(3 99 217 37)(4 100 218 38)(5 101 219 39)(6 102 220 40)(7 103 221 41)(8 104 222 42)(9 105 223 43)(10 106 224 44)(11 107 197 45)(12 108 198 46)(13 109 199 47)(14 110 200 48)(15 111 201 49)(16 112 202 50)(17 85 203 51)(18 86 204 52)(19 87 205 53)(20 88 206 54)(21 89 207 55)(22 90 208 56)(23 91 209 29)(24 92 210 30)(25 93 211 31)(26 94 212 32)(27 95 213 33)(28 96 214 34)(57 167 125 186)(58 168 126 187)(59 141 127 188)(60 142 128 189)(61 143 129 190)(62 144 130 191)(63 145 131 192)(64 146 132 193)(65 147 133 194)(66 148 134 195)(67 149 135 196)(68 150 136 169)(69 151 137 170)(70 152 138 171)(71 153 139 172)(72 154 140 173)(73 155 113 174)(74 156 114 175)(75 157 115 176)(76 158 116 177)(77 159 117 178)(78 160 118 179)(79 161 119 180)(80 162 120 181)(81 163 121 182)(82 164 122 183)(83 165 123 184)(84 166 124 185)
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 121)(9 122)(10 123)(11 124)(12 125)(13 126)(14 127)(15 128)(16 129)(17 130)(18 131)(19 132)(20 133)(21 134)(22 135)(23 136)(24 137)(25 138)(26 139)(27 140)(28 113)(29 169)(30 170)(31 171)(32 172)(33 173)(34 174)(35 175)(36 176)(37 177)(38 178)(39 179)(40 180)(41 181)(42 182)(43 183)(44 184)(45 185)(46 186)(47 187)(48 188)(49 189)(50 190)(51 191)(52 192)(53 193)(54 194)(55 195)(56 196)(57 198)(58 199)(59 200)(60 201)(61 202)(62 203)(63 204)(64 205)(65 206)(66 207)(67 208)(68 209)(69 210)(70 211)(71 212)(72 213)(73 214)(74 215)(75 216)(76 217)(77 218)(78 219)(79 220)(80 221)(81 222)(82 223)(83 224)(84 197)(85 144)(86 145)(87 146)(88 147)(89 148)(90 149)(91 150)(92 151)(93 152)(94 153)(95 154)(96 155)(97 156)(98 157)(99 158)(100 159)(101 160)(102 161)(103 162)(104 163)(105 164)(106 165)(107 166)(108 167)(109 168)(110 141)(111 142)(112 143)
G:=sub<Sym(224)| (1,60)(2,61)(3,62)(4,63)(5,64)(6,65)(7,66)(8,67)(9,68)(10,69)(11,70)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,84)(26,57)(27,58)(28,59)(29,183)(30,184)(31,185)(32,186)(33,187)(34,188)(35,189)(36,190)(37,191)(38,192)(39,193)(40,194)(41,195)(42,196)(43,169)(44,170)(45,171)(46,172)(47,173)(48,174)(49,175)(50,176)(51,177)(52,178)(53,179)(54,180)(55,181)(56,182)(85,158)(86,159)(87,160)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,200)(114,201)(115,202)(116,203)(117,204)(118,205)(119,206)(120,207)(121,208)(122,209)(123,210)(124,211)(125,212)(126,213)(127,214)(128,215)(129,216)(130,217)(131,218)(132,219)(133,220)(134,221)(135,222)(136,223)(137,224)(138,197)(139,198)(140,199), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,215,35)(2,98,216,36)(3,99,217,37)(4,100,218,38)(5,101,219,39)(6,102,220,40)(7,103,221,41)(8,104,222,42)(9,105,223,43)(10,106,224,44)(11,107,197,45)(12,108,198,46)(13,109,199,47)(14,110,200,48)(15,111,201,49)(16,112,202,50)(17,85,203,51)(18,86,204,52)(19,87,205,53)(20,88,206,54)(21,89,207,55)(22,90,208,56)(23,91,209,29)(24,92,210,30)(25,93,211,31)(26,94,212,32)(27,95,213,33)(28,96,214,34)(57,167,125,186)(58,168,126,187)(59,141,127,188)(60,142,128,189)(61,143,129,190)(62,144,130,191)(63,145,131,192)(64,146,132,193)(65,147,133,194)(66,148,134,195)(67,149,135,196)(68,150,136,169)(69,151,137,170)(70,152,138,171)(71,153,139,172)(72,154,140,173)(73,155,113,174)(74,156,114,175)(75,157,115,176)(76,158,116,177)(77,159,117,178)(78,160,118,179)(79,161,119,180)(80,162,120,181)(81,163,121,182)(82,164,122,183)(83,165,123,184)(84,166,124,185), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,127)(15,128)(16,129)(17,130)(18,131)(19,132)(20,133)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,113)(29,169)(30,170)(31,171)(32,172)(33,173)(34,174)(35,175)(36,176)(37,177)(38,178)(39,179)(40,180)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,198)(58,199)(59,200)(60,201)(61,202)(62,203)(63,204)(64,205)(65,206)(66,207)(67,208)(68,209)(69,210)(70,211)(71,212)(72,213)(73,214)(74,215)(75,216)(76,217)(77,218)(78,219)(79,220)(80,221)(81,222)(82,223)(83,224)(84,197)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,160)(102,161)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,141)(111,142)(112,143)>;
G:=Group( (1,60)(2,61)(3,62)(4,63)(5,64)(6,65)(7,66)(8,67)(9,68)(10,69)(11,70)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,84)(26,57)(27,58)(28,59)(29,183)(30,184)(31,185)(32,186)(33,187)(34,188)(35,189)(36,190)(37,191)(38,192)(39,193)(40,194)(41,195)(42,196)(43,169)(44,170)(45,171)(46,172)(47,173)(48,174)(49,175)(50,176)(51,177)(52,178)(53,179)(54,180)(55,181)(56,182)(85,158)(86,159)(87,160)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,200)(114,201)(115,202)(116,203)(117,204)(118,205)(119,206)(120,207)(121,208)(122,209)(123,210)(124,211)(125,212)(126,213)(127,214)(128,215)(129,216)(130,217)(131,218)(132,219)(133,220)(134,221)(135,222)(136,223)(137,224)(138,197)(139,198)(140,199), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,215,35)(2,98,216,36)(3,99,217,37)(4,100,218,38)(5,101,219,39)(6,102,220,40)(7,103,221,41)(8,104,222,42)(9,105,223,43)(10,106,224,44)(11,107,197,45)(12,108,198,46)(13,109,199,47)(14,110,200,48)(15,111,201,49)(16,112,202,50)(17,85,203,51)(18,86,204,52)(19,87,205,53)(20,88,206,54)(21,89,207,55)(22,90,208,56)(23,91,209,29)(24,92,210,30)(25,93,211,31)(26,94,212,32)(27,95,213,33)(28,96,214,34)(57,167,125,186)(58,168,126,187)(59,141,127,188)(60,142,128,189)(61,143,129,190)(62,144,130,191)(63,145,131,192)(64,146,132,193)(65,147,133,194)(66,148,134,195)(67,149,135,196)(68,150,136,169)(69,151,137,170)(70,152,138,171)(71,153,139,172)(72,154,140,173)(73,155,113,174)(74,156,114,175)(75,157,115,176)(76,158,116,177)(77,159,117,178)(78,160,118,179)(79,161,119,180)(80,162,120,181)(81,163,121,182)(82,164,122,183)(83,165,123,184)(84,166,124,185), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,127)(15,128)(16,129)(17,130)(18,131)(19,132)(20,133)(21,134)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,113)(29,169)(30,170)(31,171)(32,172)(33,173)(34,174)(35,175)(36,176)(37,177)(38,178)(39,179)(40,180)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,198)(58,199)(59,200)(60,201)(61,202)(62,203)(63,204)(64,205)(65,206)(66,207)(67,208)(68,209)(69,210)(70,211)(71,212)(72,213)(73,214)(74,215)(75,216)(76,217)(77,218)(78,219)(79,220)(80,221)(81,222)(82,223)(83,224)(84,197)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,160)(102,161)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,141)(111,142)(112,143) );
G=PermutationGroup([(1,60),(2,61),(3,62),(4,63),(5,64),(6,65),(7,66),(8,67),(9,68),(10,69),(11,70),(12,71),(13,72),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,80),(22,81),(23,82),(24,83),(25,84),(26,57),(27,58),(28,59),(29,183),(30,184),(31,185),(32,186),(33,187),(34,188),(35,189),(36,190),(37,191),(38,192),(39,193),(40,194),(41,195),(42,196),(43,169),(44,170),(45,171),(46,172),(47,173),(48,174),(49,175),(50,176),(51,177),(52,178),(53,179),(54,180),(55,181),(56,182),(85,158),(86,159),(87,160),(88,161),(89,162),(90,163),(91,164),(92,165),(93,166),(94,167),(95,168),(96,141),(97,142),(98,143),(99,144),(100,145),(101,146),(102,147),(103,148),(104,149),(105,150),(106,151),(107,152),(108,153),(109,154),(110,155),(111,156),(112,157),(113,200),(114,201),(115,202),(116,203),(117,204),(118,205),(119,206),(120,207),(121,208),(122,209),(123,210),(124,211),(125,212),(126,213),(127,214),(128,215),(129,216),(130,217),(131,218),(132,219),(133,220),(134,221),(135,222),(136,223),(137,224),(138,197),(139,198),(140,199)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,97,215,35),(2,98,216,36),(3,99,217,37),(4,100,218,38),(5,101,219,39),(6,102,220,40),(7,103,221,41),(8,104,222,42),(9,105,223,43),(10,106,224,44),(11,107,197,45),(12,108,198,46),(13,109,199,47),(14,110,200,48),(15,111,201,49),(16,112,202,50),(17,85,203,51),(18,86,204,52),(19,87,205,53),(20,88,206,54),(21,89,207,55),(22,90,208,56),(23,91,209,29),(24,92,210,30),(25,93,211,31),(26,94,212,32),(27,95,213,33),(28,96,214,34),(57,167,125,186),(58,168,126,187),(59,141,127,188),(60,142,128,189),(61,143,129,190),(62,144,130,191),(63,145,131,192),(64,146,132,193),(65,147,133,194),(66,148,134,195),(67,149,135,196),(68,150,136,169),(69,151,137,170),(70,152,138,171),(71,153,139,172),(72,154,140,173),(73,155,113,174),(74,156,114,175),(75,157,115,176),(76,158,116,177),(77,159,117,178),(78,160,118,179),(79,161,119,180),(80,162,120,181),(81,163,121,182),(82,164,122,183),(83,165,123,184),(84,166,124,185)], [(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,121),(9,122),(10,123),(11,124),(12,125),(13,126),(14,127),(15,128),(16,129),(17,130),(18,131),(19,132),(20,133),(21,134),(22,135),(23,136),(24,137),(25,138),(26,139),(27,140),(28,113),(29,169),(30,170),(31,171),(32,172),(33,173),(34,174),(35,175),(36,176),(37,177),(38,178),(39,179),(40,180),(41,181),(42,182),(43,183),(44,184),(45,185),(46,186),(47,187),(48,188),(49,189),(50,190),(51,191),(52,192),(53,193),(54,194),(55,195),(56,196),(57,198),(58,199),(59,200),(60,201),(61,202),(62,203),(63,204),(64,205),(65,206),(66,207),(67,208),(68,209),(69,210),(70,211),(71,212),(72,213),(73,214),(74,215),(75,216),(76,217),(77,218),(78,219),(79,220),(80,221),(81,222),(82,223),(83,224),(84,197),(85,144),(86,145),(87,146),(88,147),(89,148),(90,149),(91,150),(92,151),(93,152),(94,153),(95,154),(96,155),(97,156),(98,157),(99,158),(100,159),(101,160),(102,161),(103,162),(104,163),(105,164),(106,165),(107,166),(108,167),(109,168),(110,141),(111,142),(112,143)])
Matrix representation ►G ⊆ GL4(𝔽29) generated by
1 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 19 | 0 |
0 | 0 | 0 | 19 |
1 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 1 | 27 |
0 | 0 | 1 | 28 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 28 |
G:=sub<GL(4,GF(29))| [1,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,28,0,0,0,0,19,0,0,0,0,19],[1,0,0,0,0,28,0,0,0,0,1,1,0,0,27,28],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,28] >;
280 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4H | 4I | ··· | 4X | 7A | ··· | 7F | 14A | ··· | 14AP | 14AQ | ··· | 14CL | 28A | ··· | 28AV | 28AW | ··· | 28EN |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
280 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C7 | C14 | C14 | C14 | C14 | C14 | C14 | C28 | D4 | C4○D4 | C7×D4 | C7×C4○D4 |
kernel | D4×C2×C28 | C2×C4×C28 | C14×C22⋊C4 | C14×C4⋊C4 | D4×C28 | C23×C28 | D4×C2×C14 | D4×C14 | C2×C4×D4 | C2×C42 | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C23×C4 | C22×D4 | C2×D4 | C2×C28 | C2×C14 | C2×C4 | C22 |
# reps | 1 | 1 | 2 | 1 | 8 | 2 | 1 | 16 | 6 | 6 | 12 | 6 | 48 | 12 | 6 | 96 | 4 | 4 | 24 | 24 |
In GAP, Magma, Sage, TeX
D_4\times C_2\times C_{28}
% in TeX
G:=Group("D4xC2xC28");
// GroupNames label
G:=SmallGroup(448,1298);
// by ID
G=gap.SmallGroup(448,1298);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1568,1597,1192]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations