Extensions 1→N→G→Q→1 with N=C14 and Q=C2×SD16

Direct product G=N×Q with N=C14 and Q=C2×SD16
dρLabelID
SD16×C2×C14224SD16xC2xC14448,1353

Semidirect products G=N:Q with N=C14 and Q=C2×SD16
extensionφ:Q→Aut NdρLabelID
C141(C2×SD16) = C22×C56⋊C2φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14:1(C2xSD16)448,1192
C142(C2×SD16) = C2×D7×SD16φ: C2×SD16/SD16C2 ⊆ Aut C14112C14:2(C2xSD16)448,1211
C143(C2×SD16) = C22×D4.D7φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14:3(C2xSD16)448,1247
C144(C2×SD16) = C22×Q8⋊D7φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14:4(C2xSD16)448,1260

Non-split extensions G=N.Q with N=C14 and Q=C2×SD16
extensionφ:Q→Aut NdρLabelID
C14.1(C2×SD16) = C569Q8φ: C2×SD16/C2×C8C2 ⊆ Aut C14448C14.1(C2xSD16)448,214
C14.2(C2×SD16) = C28.14Q16φ: C2×SD16/C2×C8C2 ⊆ Aut C14448C14.2(C2xSD16)448,215
C14.3(C2×SD16) = C4×C56⋊C2φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.3(C2xSD16)448,225
C14.4(C2×SD16) = C85D28φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.4(C2xSD16)448,227
C14.5(C2×SD16) = C4.5D56φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.5(C2xSD16)448,228
C14.6(C2×SD16) = C23.34D28φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.6(C2xSD16)448,255
C14.7(C2×SD16) = D28.31D4φ: C2×SD16/C2×C8C2 ⊆ Aut C14112C14.7(C2xSD16)448,265
C14.8(C2×SD16) = C23.38D28φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.8(C2xSD16)448,269
C14.9(C2×SD16) = Dic1414D4φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.9(C2xSD16)448,272
C14.10(C2×SD16) = C28⋊SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.10(C2xSD16)448,375
C14.11(C2×SD16) = D283Q8φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.11(C2xSD16)448,376
C14.12(C2×SD16) = Dic148D4φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.12(C2xSD16)448,382
C14.13(C2×SD16) = Dic144Q8φ: C2×SD16/C2×C8C2 ⊆ Aut C14448C14.13(C2xSD16)448,385
C14.14(C2×SD16) = C2×C28.44D4φ: C2×SD16/C2×C8C2 ⊆ Aut C14448C14.14(C2xSD16)448,637
C14.15(C2×SD16) = C2×C8⋊Dic7φ: C2×SD16/C2×C8C2 ⊆ Aut C14448C14.15(C2xSD16)448,638
C14.16(C2×SD16) = C2×C2.D56φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.16(C2xSD16)448,646
C14.17(C2×SD16) = C5630D4φ: C2×SD16/C2×C8C2 ⊆ Aut C14224C14.17(C2xSD16)448,648
C14.18(C2×SD16) = Dic76SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.18(C2xSD16)448,292
C14.19(C2×SD16) = Dic7.SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.19(C2xSD16)448,294
C14.20(C2×SD16) = D4⋊Dic14φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.20(C2xSD16)448,295
C14.21(C2×SD16) = Dic142D4φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.21(C2xSD16)448,296
C14.22(C2×SD16) = D7×D4⋊C4φ: C2×SD16/SD16C2 ⊆ Aut C14112C14.22(C2xSD16)448,303
C14.23(C2×SD16) = D4.6D28φ: C2×SD16/SD16C2 ⊆ Aut C14112C14.23(C2xSD16)448,310
C14.24(C2×SD16) = D14.SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.24(C2xSD16)448,311
C14.25(C2×SD16) = D14⋊SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.25(C2xSD16)448,312
C14.26(C2×SD16) = Dic77SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.26(C2xSD16)448,322
C14.27(C2×SD16) = Q8⋊Dic14φ: C2×SD16/SD16C2 ⊆ Aut C14448C14.27(C2xSD16)448,325
C14.28(C2×SD16) = Dic7.1Q16φ: C2×SD16/SD16C2 ⊆ Aut C14448C14.28(C2xSD16)448,326
C14.29(C2×SD16) = D7×Q8⋊C4φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.29(C2xSD16)448,335
C14.30(C2×SD16) = D14.1SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.30(C2xSD16)448,339
C14.31(C2×SD16) = Q82D28φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.31(C2xSD16)448,340
C14.32(C2×SD16) = D142SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.32(C2xSD16)448,341
C14.33(C2×SD16) = Dic7⋊SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.33(C2xSD16)448,352
C14.34(C2×SD16) = Dic78SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.34(C2xSD16)448,386
C14.35(C2×SD16) = Dic14⋊Q8φ: C2×SD16/SD16C2 ⊆ Aut C14448C14.35(C2xSD16)448,388
C14.36(C2×SD16) = C565Q8φ: C2×SD16/SD16C2 ⊆ Aut C14448C14.36(C2xSD16)448,389
C14.37(C2×SD16) = D7×C4.Q8φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.37(C2xSD16)448,393
C14.38(C2×SD16) = D14.2SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.38(C2xSD16)448,396
C14.39(C2×SD16) = D14.4SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.39(C2xSD16)448,397
C14.40(C2×SD16) = C88D28φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.40(C2xSD16)448,398
C14.41(C2×SD16) = D28⋊Q8φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.41(C2xSD16)448,404
C14.42(C2×SD16) = SD16×Dic7φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.42(C2xSD16)448,695
C14.43(C2×SD16) = Dic73SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.43(C2xSD16)448,696
C14.44(C2×SD16) = Dic75SD16φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.44(C2xSD16)448,697
C14.45(C2×SD16) = D146SD16φ: C2×SD16/SD16C2 ⊆ Aut C14112C14.45(C2xSD16)448,703
C14.46(C2×SD16) = Dic147D4φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.46(C2xSD16)448,704
C14.47(C2×SD16) = C5614D4φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.47(C2xSD16)448,705
C14.48(C2×SD16) = C5615D4φ: C2×SD16/SD16C2 ⊆ Aut C14224C14.48(C2xSD16)448,709
C14.49(C2×SD16) = C2×C14.Q16φ: C2×SD16/C2×D4C2 ⊆ Aut C14448C14.49(C2xSD16)448,503
C14.50(C2×SD16) = C4⋊C4.231D14φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.50(C2xSD16)448,505
C14.51(C2×SD16) = C28.38SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.51(C2xSD16)448,542
C14.52(C2×SD16) = C4×D4.D7φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.52(C2xSD16)448,551
C14.53(C2×SD16) = D4.2D28φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.53(C2xSD16)448,553
C14.54(C2×SD16) = C4⋊D4.D7φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.54(C2xSD16)448,568
C14.55(C2×SD16) = Dic1417D4φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.55(C2xSD16)448,574
C14.56(C2×SD16) = C7⋊C823D4φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.56(C2xSD16)448,575
C14.57(C2×SD16) = C28.16D8φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.57(C2xSD16)448,604
C14.58(C2×SD16) = Dic149D4φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.58(C2xSD16)448,609
C14.59(C2×SD16) = C284SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.59(C2xSD16)448,610
C14.60(C2×SD16) = C28.SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C14448C14.60(C2xSD16)448,613
C14.61(C2×SD16) = C28.11Q16φ: C2×SD16/C2×D4C2 ⊆ Aut C14448C14.61(C2xSD16)448,627
C14.62(C2×SD16) = Dic146Q8φ: C2×SD16/C2×D4C2 ⊆ Aut C14448C14.62(C2xSD16)448,628
C14.63(C2×SD16) = C2×D4⋊Dic7φ: C2×SD16/C2×D4C2 ⊆ Aut C14224C14.63(C2xSD16)448,748
C14.64(C2×SD16) = (C7×D4).31D4φ: C2×SD16/C2×D4C2 ⊆ Aut C14112C14.64(C2xSD16)448,752
C14.65(C2×SD16) = C2×C4.Dic14φ: C2×SD16/C2×Q8C2 ⊆ Aut C14448C14.65(C2xSD16)448,497
C14.66(C2×SD16) = C2×C14.D8φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.66(C2xSD16)448,499
C14.67(C2×SD16) = C4⋊C4.228D14φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.67(C2xSD16)448,502
C14.68(C2×SD16) = C28.48SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C14448C14.68(C2xSD16)448,554
C14.69(C2×SD16) = C4×Q8⋊D7φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.69(C2xSD16)448,559
C14.70(C2×SD16) = Q8⋊D28φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.70(C2xSD16)448,561
C14.71(C2×SD16) = C22⋊Q8.D7φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.71(C2xSD16)448,577
C14.72(C2×SD16) = D28.36D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C14112C14.72(C2xSD16)448,580
C14.73(C2×SD16) = C7⋊C824D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.73(C2xSD16)448,582
C14.74(C2×SD16) = C28.Q16φ: C2×SD16/C2×Q8C2 ⊆ Aut C14448C14.74(C2xSD16)448,615
C14.75(C2×SD16) = C285SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.75(C2xSD16)448,617
C14.76(C2×SD16) = D285Q8φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.76(C2xSD16)448,618
C14.77(C2×SD16) = C286SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.77(C2xSD16)448,619
C14.78(C2×SD16) = C28.D8φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.78(C2xSD16)448,622
C14.79(C2×SD16) = C2×Q8⋊Dic7φ: C2×SD16/C2×Q8C2 ⊆ Aut C14448C14.79(C2xSD16)448,758
C14.80(C2×SD16) = (C7×Q8)⋊13D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C14224C14.80(C2xSD16)448,761
C14.81(C2×SD16) = C14×D4⋊C4central extension (φ=1)224C14.81(C2xSD16)448,822
C14.82(C2×SD16) = C14×Q8⋊C4central extension (φ=1)448C14.82(C2xSD16)448,823
C14.83(C2×SD16) = C14×C4.Q8central extension (φ=1)448C14.83(C2xSD16)448,833
C14.84(C2×SD16) = SD16×C28central extension (φ=1)224C14.84(C2xSD16)448,846
C14.85(C2×SD16) = C7×Q8⋊D4central extension (φ=1)224C14.85(C2xSD16)448,856
C14.86(C2×SD16) = C7×C22⋊SD16central extension (φ=1)112C14.86(C2xSD16)448,858
C14.87(C2×SD16) = C7×C4⋊SD16central extension (φ=1)224C14.87(C2xSD16)448,868
C14.88(C2×SD16) = C7×D4.D4central extension (φ=1)224C14.88(C2xSD16)448,869
C14.89(C2×SD16) = C7×C88D4central extension (φ=1)224C14.89(C2xSD16)448,873
C14.90(C2×SD16) = C7×Q8⋊Q8central extension (φ=1)448C14.90(C2xSD16)448,883
C14.91(C2×SD16) = C7×D42Q8central extension (φ=1)224C14.91(C2xSD16)448,884
C14.92(C2×SD16) = C7×C23.46D4central extension (φ=1)224C14.92(C2xSD16)448,889
C14.93(C2×SD16) = C7×C23.47D4central extension (φ=1)224C14.93(C2xSD16)448,891
C14.94(C2×SD16) = C7×C4.4D8central extension (φ=1)224C14.94(C2xSD16)448,894
C14.95(C2×SD16) = C7×C4.SD16central extension (φ=1)448C14.95(C2xSD16)448,895
C14.96(C2×SD16) = C7×C85D4central extension (φ=1)224C14.96(C2xSD16)448,900
C14.97(C2×SD16) = C7×C83Q8central extension (φ=1)448C14.97(C2xSD16)448,906

׿
×
𝔽