Copied to
clipboard

G = D28.31D4order 448 = 26·7

1st non-split extension by D28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.31D4, C23.36D28, (C2×C8)⋊15D14, C22⋊C88D7, (C2×C14)⋊1SD16, C4.119(D4×D7), (C2×C28).42D4, (C2×C4).31D28, C2.D568C2, (C2×C56)⋊14C22, C14.7C22≀C2, C28.331(C2×D4), C71(C22⋊SD16), C4⋊Dic71C22, C14.7(C2×SD16), C28.48D41C2, C14.8(C8⋊C22), C223(C56⋊C2), (C22×D28).3C2, (C22×C4).81D14, (C22×C14).51D4, C2.11(C8⋊D14), (C2×C28).741C23, (C2×Dic14)⋊1C22, C22.104(C2×D28), C2.10(C22⋊D28), (C2×D28).191C22, (C22×C28).50C22, (C2×C56⋊C2)⋊9C2, (C7×C22⋊C8)⋊10C2, C2.10(C2×C56⋊C2), (C2×C14).124(C2×D4), (C2×C4).686(C22×D7), SmallGroup(448,265)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.31D4
C1C7C14C28C2×C28C2×D28C22×D28 — D28.31D4
C7C14C2×C28 — D28.31D4
C1C22C22×C4C22⋊C8

Generators and relations for D28.31D4
 G = < a,b,c,d | a28=b2=d2=1, c4=a14, bab=a-1, ac=ca, ad=da, cbc-1=a7b, bd=db, dcd=a7c3 >

Subgroups: 1404 in 188 conjugacy classes, 47 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C56, Dic14, D28, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×C14, C22⋊SD16, C56⋊C2, Dic7⋊C4, C4⋊Dic7, C23.D7, C2×C56, C2×Dic14, C2×D28, C2×D28, C22×C28, C23×D7, C2.D56, C7×C22⋊C8, C2×C56⋊C2, C28.48D4, C22×D28, D28.31D4
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C22≀C2, C2×SD16, C8⋊C22, D28, C22×D7, C22⋊SD16, C56⋊C2, C2×D28, D4×D7, C22⋊D28, C2×C56⋊C2, C8⋊D14, D28.31D4

Smallest permutation representation of D28.31D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 45)(26 44)(27 43)(28 42)(57 102)(58 101)(59 100)(60 99)(61 98)(62 97)(63 96)(64 95)(65 94)(66 93)(67 92)(68 91)(69 90)(70 89)(71 88)(72 87)(73 86)(74 85)(75 112)(76 111)(77 110)(78 109)(79 108)(80 107)(81 106)(82 105)(83 104)(84 103)
(1 104 35 84 15 90 49 70)(2 105 36 57 16 91 50 71)(3 106 37 58 17 92 51 72)(4 107 38 59 18 93 52 73)(5 108 39 60 19 94 53 74)(6 109 40 61 20 95 54 75)(7 110 41 62 21 96 55 76)(8 111 42 63 22 97 56 77)(9 112 43 64 23 98 29 78)(10 85 44 65 24 99 30 79)(11 86 45 66 25 100 31 80)(12 87 46 67 26 101 32 81)(13 88 47 68 27 102 33 82)(14 89 48 69 28 103 34 83)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 112)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 91)(65 92)(66 93)(67 94)(68 95)(69 96)(70 97)(71 98)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 108)(82 109)(83 110)(84 111)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103), (1,104,35,84,15,90,49,70)(2,105,36,57,16,91,50,71)(3,106,37,58,17,92,51,72)(4,107,38,59,18,93,52,73)(5,108,39,60,19,94,53,74)(6,109,40,61,20,95,54,75)(7,110,41,62,21,96,55,76)(8,111,42,63,22,97,56,77)(9,112,43,64,23,98,29,78)(10,85,44,65,24,99,30,79)(11,86,45,66,25,100,31,80)(12,87,46,67,26,101,32,81)(13,88,47,68,27,102,33,82)(14,89,48,69,28,103,34,83), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,112)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103), (1,104,35,84,15,90,49,70)(2,105,36,57,16,91,50,71)(3,106,37,58,17,92,51,72)(4,107,38,59,18,93,52,73)(5,108,39,60,19,94,53,74)(6,109,40,61,20,95,54,75)(7,110,41,62,21,96,55,76)(8,111,42,63,22,97,56,77)(9,112,43,64,23,98,29,78)(10,85,44,65,24,99,30,79)(11,86,45,66,25,100,31,80)(12,87,46,67,26,101,32,81)(13,88,47,68,27,102,33,82)(14,89,48,69,28,103,34,83), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,112)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,45),(26,44),(27,43),(28,42),(57,102),(58,101),(59,100),(60,99),(61,98),(62,97),(63,96),(64,95),(65,94),(66,93),(67,92),(68,91),(69,90),(70,89),(71,88),(72,87),(73,86),(74,85),(75,112),(76,111),(77,110),(78,109),(79,108),(80,107),(81,106),(82,105),(83,104),(84,103)], [(1,104,35,84,15,90,49,70),(2,105,36,57,16,91,50,71),(3,106,37,58,17,92,51,72),(4,107,38,59,18,93,52,73),(5,108,39,60,19,94,53,74),(6,109,40,61,20,95,54,75),(7,110,41,62,21,96,55,76),(8,111,42,63,22,97,56,77),(9,112,43,64,23,98,29,78),(10,85,44,65,24,99,30,79),(11,86,45,66,25,100,31,80),(12,87,46,67,26,101,32,81),(13,88,47,68,27,102,33,82),(14,89,48,69,28,103,34,83)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,112),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,91),(65,92),(66,93),(67,94),(68,95),(69,96),(70,97),(71,98),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,108),(82,109),(83,110),(84,111)]])

79 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222222244444777888814···1414···1428···2828···2856···56
size11112228282828224565622244442···24···42···24···44···4

79 irreducible representations

dim1111112222222222444
type+++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7SD16D14D14D28D28C56⋊C2C8⋊C22D4×D7C8⋊D14
kernelD28.31D4C2.D56C7×C22⋊C8C2×C56⋊C2C28.48D4C22×D28D28C2×C28C22×C14C22⋊C8C2×C14C2×C8C22×C4C2×C4C23C22C14C4C2
# reps12121141134636624166

Matrix representation of D28.31D4 in GL4(𝔽113) generated by

1093200
815800
001120
000112
,
1093200
109400
0010
001112
,
897100
425000
001122
0001
,
112000
011200
0010
001112
G:=sub<GL(4,GF(113))| [109,81,0,0,32,58,0,0,0,0,112,0,0,0,0,112],[109,109,0,0,32,4,0,0,0,0,1,1,0,0,0,112],[89,42,0,0,71,50,0,0,0,0,112,0,0,0,2,1],[112,0,0,0,0,112,0,0,0,0,1,1,0,0,0,112] >;

D28.31D4 in GAP, Magma, Sage, TeX

D_{28}._{31}D_4
% in TeX

G:=Group("D28.31D4");
// GroupNames label

G:=SmallGroup(448,265);
// by ID

G=gap.SmallGroup(448,265);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,58,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=d^2=1,c^4=a^14,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d=a^7*c^3>;
// generators/relations

׿
×
𝔽