extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10)⋊D12 = Dic5⋊S4 | φ: D12/C2 → D6 ⊆ Aut C2×C10 | 60 | 6 | (C2xC10):D12 | 480,978 |
(C2×C10)⋊2D12 = C5×C4⋊S4 | φ: D12/C4 → S3 ⊆ Aut C2×C10 | 60 | 6 | (C2xC10):2D12 | 480,1015 |
(C2×C10)⋊3D12 = C20⋊S4 | φ: D12/C4 → S3 ⊆ Aut C2×C10 | 60 | 6+ | (C2xC10):3D12 | 480,1026 |
(C2×C10)⋊4D12 = (C2×C10)⋊4D12 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10):4D12 | 480,642 |
(C2×C10)⋊5D12 = D30⋊19D4 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | | (C2xC10):5D12 | 480,649 |
(C2×C10)⋊6D12 = D30⋊16D4 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | | (C2xC10):6D12 | 480,847 |
(C2×C10)⋊7D12 = C5×C12⋊7D4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):7D12 | 480,809 |
(C2×C10)⋊8D12 = C60⋊29D4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):8D12 | 480,895 |
(C2×C10)⋊9D12 = C22×D60 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):9D12 | 480,1167 |
(C2×C10)⋊10D12 = C5×D6⋊D4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10):10D12 | 480,761 |
(C2×C10)⋊11D12 = (C2×C10)⋊11D12 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | | (C2xC10):11D12 | 480,646 |
(C2×C10)⋊12D12 = C22×C5⋊D12 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10):12D12 | 480,1120 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).1D12 = C60.98D4 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).1D12 | 480,54 |
(C2×C10).2D12 = C15⋊8(C23⋊C4) | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).2D12 | 480,72 |
(C2×C10).3D12 = C23.6D30 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).3D12 | 480,166 |
(C2×C10).4D12 = D60⋊10C4 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).4D12 | 480,185 |
(C2×C10).5D12 = C20.60D12 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).5D12 | 480,379 |
(C2×C10).6D12 = C60.38D4 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4+ | (C2xC10).6D12 | 480,381 |
(C2×C10).7D12 = D12.33D10 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | 4- | (C2xC10).7D12 | 480,398 |
(C2×C10).8D12 = (C2×C10).D12 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10).8D12 | 480,619 |
(C2×C10).9D12 = C22.D60 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | | (C2xC10).9D12 | 480,851 |
(C2×C10).10D12 = C8⋊D30 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 120 | 4+ | (C2xC10).10D12 | 480,873 |
(C2×C10).11D12 = C8.D30 | φ: D12/C6 → C22 ⊆ Aut C2×C10 | 240 | 4- | (C2xC10).11D12 | 480,874 |
(C2×C10).12D12 = C5×C4○D24 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | 2 | (C2xC10).12D12 | 480,783 |
(C2×C10).13D12 = Dic30⋊8C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).13D12 | 480,176 |
(C2×C10).14D12 = C120⋊10C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).14D12 | 480,177 |
(C2×C10).15D12 = C120⋊9C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).15D12 | 480,178 |
(C2×C10).16D12 = D60⋊8C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).16D12 | 480,181 |
(C2×C10).17D12 = C30.29C42 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).17D12 | 480,191 |
(C2×C10).18D12 = C2×C24⋊D5 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).18D12 | 480,867 |
(C2×C10).19D12 = C2×D120 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).19D12 | 480,868 |
(C2×C10).20D12 = C40.69D6 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | 2 | (C2xC10).20D12 | 480,869 |
(C2×C10).21D12 = C2×Dic60 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).21D12 | 480,870 |
(C2×C10).22D12 = C2×C60⋊5C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).22D12 | 480,890 |
(C2×C10).23D12 = C2×D30⋊3C4 | φ: D12/C12 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).23D12 | 480,892 |
(C2×C10).24D12 = C5×C23.6D6 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).24D12 | 480,125 |
(C2×C10).25D12 = C5×D12⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).25D12 | 480,144 |
(C2×C10).26D12 = C5×C23.21D6 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).26D12 | 480,765 |
(C2×C10).27D12 = C5×C8⋊D6 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).27D12 | 480,787 |
(C2×C10).28D12 = C5×C8.D6 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).28D12 | 480,788 |
(C2×C10).29D12 = C10.D24 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).29D12 | 480,43 |
(C2×C10).30D12 = D60⋊15C4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).30D12 | 480,45 |
(C2×C10).31D12 = C10.Dic12 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).31D12 | 480,49 |
(C2×C10).32D12 = Dic30⋊15C4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).32D12 | 480,51 |
(C2×C10).33D12 = D60⋊13C4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).33D12 | 480,56 |
(C2×C10).34D12 = C60.7Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).34D12 | 480,61 |
(C2×C10).35D12 = C60.8Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).35D12 | 480,64 |
(C2×C10).36D12 = C30.24C42 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).36D12 | 480,70 |
(C2×C10).37D12 = C15⋊9(C23⋊C4) | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).37D12 | 480,73 |
(C2×C10).38D12 = C2×C5⋊D24 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).38D12 | 480,378 |
(C2×C10).39D12 = D60⋊36C22 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).39D12 | 480,380 |
(C2×C10).40D12 = C2×D12.D5 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).40D12 | 480,392 |
(C2×C10).41D12 = C2×Dic6⋊D5 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).41D12 | 480,393 |
(C2×C10).42D12 = C2×C5⋊Dic12 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).42D12 | 480,396 |
(C2×C10).43D12 = C20.D12 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | 4 | (C2xC10).43D12 | 480,397 |
(C2×C10).44D12 = C2×D6⋊Dic5 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).44D12 | 480,614 |
(C2×C10).45D12 = C2×D30⋊4C4 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).45D12 | 480,616 |
(C2×C10).46D12 = C2×C30.Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 480 | | (C2xC10).46D12 | 480,617 |
(C2×C10).47D12 = C10.(C2×D12) | φ: D12/D6 → C2 ⊆ Aut C2×C10 | 240 | | (C2xC10).47D12 | 480,618 |
(C2×C10).48D12 = C5×C2.Dic12 | central extension (φ=1) | 480 | | (C2xC10).48D12 | 480,135 |
(C2×C10).49D12 = C5×C8⋊Dic3 | central extension (φ=1) | 480 | | (C2xC10).49D12 | 480,136 |
(C2×C10).50D12 = C5×C24⋊1C4 | central extension (φ=1) | 480 | | (C2xC10).50D12 | 480,137 |
(C2×C10).51D12 = C5×C2.D24 | central extension (φ=1) | 240 | | (C2xC10).51D12 | 480,140 |
(C2×C10).52D12 = C5×C6.C42 | central extension (φ=1) | 480 | | (C2xC10).52D12 | 480,150 |
(C2×C10).53D12 = C10×C24⋊C2 | central extension (φ=1) | 240 | | (C2xC10).53D12 | 480,781 |
(C2×C10).54D12 = C10×D24 | central extension (φ=1) | 240 | | (C2xC10).54D12 | 480,782 |
(C2×C10).55D12 = C10×Dic12 | central extension (φ=1) | 480 | | (C2xC10).55D12 | 480,784 |
(C2×C10).56D12 = C10×C4⋊Dic3 | central extension (φ=1) | 480 | | (C2xC10).56D12 | 480,804 |
(C2×C10).57D12 = C10×D6⋊C4 | central extension (φ=1) | 240 | | (C2xC10).57D12 | 480,806 |