Copied to
clipboard

G = Dic5:S4order 480 = 25·3·5

The semidirect product of Dic5 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: Dic5:S4, C5:2(C4:S4), (C2xC10):D12, (C5xA4):1D4, (C2xS4):1D5, (C10xS4):1C2, C2.13(D5xS4), A4:1(C5:D4), C10.12(C2xS4), (A4xDic5):3C2, (C2xA4).4D10, C22:(C5:D12), C23.4(S3xD5), (C22xC10).4D6, (C10xA4).4C22, (C22xDic5):3S3, (C2xC5:S4):3C2, SmallGroup(480,978)

Series: Derived Chief Lower central Upper central

C1C22C10xA4 — Dic5:S4
C1C22C2xC10C5xA4C10xA4A4xDic5 — Dic5:S4
C5xA4C10xA4 — Dic5:S4
C1C2

Generators and relations for Dic5:S4
 G = < a,b,c,d,e,f | a10=c2=d2=e3=f2=1, b2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a5b, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 916 in 112 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, D4, C23, C23, D5, C10, C10, C12, A4, D6, C15, C22:C4, C4:C4, C22xC4, C2xD4, Dic5, Dic5, C20, D10, C2xC10, C2xC10, D12, S4, C2xA4, C5xS3, D15, C30, C4:D4, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xC10, C22xC10, C4xA4, C2xS4, C2xS4, C3xDic5, C5xA4, S3xC10, D30, C10.D4, D10:C4, C23.D5, C22xDic5, C2xC5:D4, D4xC10, C4:S4, C5:D12, C5xS4, C5:S4, C10xA4, Dic5:D4, A4xDic5, C10xS4, C2xC5:S4, Dic5:S4
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, D12, S4, C5:D4, C2xS4, S3xD5, C4:S4, C5:D12, D5xS4, Dic5:S4

Smallest permutation representation of Dic5:S4
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 36 6 31)(2 35 7 40)(3 34 8 39)(4 33 9 38)(5 32 10 37)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 54 26 59)(22 53 27 58)(23 52 28 57)(24 51 29 56)(25 60 30 55)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 19 29)(2 20 30)(3 11 21)(4 12 22)(5 13 23)(6 14 24)(7 15 25)(8 16 26)(9 17 27)(10 18 28)(31 41 51)(32 42 52)(33 43 53)(34 44 54)(35 45 55)(36 46 56)(37 47 57)(38 48 58)(39 49 59)(40 50 60)
(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 56)(42 57)(43 58)(44 59)(45 60)(46 51)(47 52)(48 53)(49 54)(50 55)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,19,29)(2,20,30)(3,11,21)(4,12,22)(5,13,23)(6,14,24)(7,15,25)(8,16,26)(9,17,27)(10,18,28)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,19,29)(2,20,30)(3,11,21)(4,12,22)(5,13,23)(6,14,24)(7,15,25)(8,16,26)(9,17,27)(10,18,28)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,36,6,31),(2,35,7,40),(3,34,8,39),(4,33,9,38),(5,32,10,37),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,54,26,59),(22,53,27,58),(23,52,28,57),(24,51,29,56),(25,60,30,55)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,19,29),(2,20,30),(3,11,21),(4,12,22),(5,13,23),(6,14,24),(7,15,25),(8,16,26),(9,17,27),(10,18,28),(31,41,51),(32,42,52),(33,43,53),(34,44,54),(35,45,55),(36,46,56),(37,47,57),(38,48,58),(39,49,59),(40,50,60)], [(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,56),(42,57),(43,58),(44,59),(45,60),(46,51),(47,52),(48,53),(49,54),(50,55)]])

34 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B 6 10A10B10C10D10E10F10G10H10I10J12A12B15A15B20A20B20C20D30A30B
order122222344445561010101010101010101012121515202020203030
size113312608101230602282266661212121240401616121212121616

34 irreducible representations

dim111122222223344666
type++++++++++++++++
imageC1C2C2C2S3D4D5D6D10D12C5:D4S4C2xS4S3xD5C5:D12C4:S4D5xS4Dic5:S4
kernelDic5:S4A4xDic5C10xS4C2xC5:S4C22xDic5C5xA4C2xS4C22xC10C2xA4C2xC10A4Dic5C10C23C22C5C2C1
# reps111111212242222144

Matrix representation of Dic5:S4 in GL5(F61)

4119000
03000
00100
00010
00001
,
3014000
131000
00100
00010
00001
,
10000
01000
006000
006001
006010
,
10000
01000
000160
001060
000060
,
10000
01000
00010
00001
00100
,
6060000
01000
000600
006000
000060

G:=sub<GL(5,GF(61))| [41,0,0,0,0,19,3,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[30,1,0,0,0,14,31,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[60,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,60] >;

Dic5:S4 in GAP, Magma, Sage, TeX

{\rm Dic}_5\rtimes S_4
% in TeX

G:=Group("Dic5:S4");
// GroupNames label

G:=SmallGroup(480,978);
// by ID

G=gap.SmallGroup(480,978);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,28,85,234,3364,5052,1286,2953,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^10=c^2=d^2=e^3=f^2=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^5*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<