# Extensions 1→N→G→Q→1 with N=C3×D5 and Q=C2×C8

Direct product G=N×Q with N=C3×D5 and Q=C2×C8
dρLabelID
D5×C2×C24240D5xC2xC24480,692

Semidirect products G=N:Q with N=C3×D5 and Q=C2×C8
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊(C2×C8) = S3×D5⋊C8φ: C2×C8/C4C22 ⊆ Out C3×D51208(C3xD5):(C2xC8)480,986
(C3×D5)⋊2(C2×C8) = S3×C8×D5φ: C2×C8/C8C2 ⊆ Out C3×D51204(C3xD5):2(C2xC8)480,319
(C3×D5)⋊3(C2×C8) = C2×D5×C3⋊C8φ: C2×C8/C2×C4C2 ⊆ Out C3×D5240(C3xD5):3(C2xC8)480,357
(C3×D5)⋊4(C2×C8) = C2×C60.C4φ: C2×C8/C2×C4C2 ⊆ Out C3×D5240(C3xD5):4(C2xC8)480,1060
(C3×D5)⋊5(C2×C8) = C6×D5⋊C8φ: C2×C8/C2×C4C2 ⊆ Out C3×D5240(C3xD5):5(C2xC8)480,1047

Non-split extensions G=N.Q with N=C3×D5 and Q=C2×C8
extensionφ:Q→Out NdρLabelID
(C3×D5).1(C2×C8) = F5×C3⋊C8φ: C2×C8/C4C22 ⊆ Out C3×D51208(C3xD5).1(C2xC8)480,223
(C3×D5).2(C2×C8) = C30.C42φ: C2×C8/C4C22 ⊆ Out C3×D51208(C3xD5).2(C2xC8)480,224
(C3×D5).3(C2×C8) = C8×C3⋊F5φ: C2×C8/C8C2 ⊆ Out C3×D51204(C3xD5).3(C2xC8)480,296
(C3×D5).4(C2×C8) = F5×C24φ: C2×C8/C8C2 ⊆ Out C3×D51204(C3xD5).4(C2xC8)480,271

׿
×
𝔽