Copied to
clipboard

G = C2×C33⋊C9order 486 = 2·35

Direct product of C2 and C33⋊C9

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Series: Derived Chief Lower central Upper central

 Derived series C1 — C32 — C2×C33⋊C9
 Chief series C1 — C3 — C32 — C33 — C34 — C33⋊C9 — C2×C33⋊C9
 Lower central C1 — C3 — C32 — C2×C33⋊C9
 Upper central C1 — C3×C6 — C32×C6 — C2×C33⋊C9

Generators and relations for C2×C33⋊C9
G = < a,b,c,d,e | a2=b3=c3=d3=e9=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bc-1d, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 504 in 180 conjugacy classes, 36 normal (14 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C33, C33, C33, C3×C18, C32×C6, C32×C6, C32×C6, C32⋊C9, C34, C2×C32⋊C9, C33×C6, C33⋊C9, C2×C33⋊C9
Quotients: C1, C2, C3, C6, C9, C32, C18, C3×C6, C3×C9, He3, 3- 1+2, C3×C18, C2×He3, C2×3- 1+2, C32⋊C9, C3≀C3, C2×C32⋊C9, C2×C3≀C3, C33⋊C9, C2×C33⋊C9

Smallest permutation representation of C2×C33⋊C9
On 54 points
Generators in S54
(1 54)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 28)(18 29)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 37)(27 38)
(1 41 28)(2 45 35)(3 30 43)(4 44 31)(5 39 29)(6 33 37)(7 38 34)(8 42 32)(9 36 40)(10 23 47)(11 48 24)(12 52 22)(13 26 50)(14 51 27)(15 46 25)(16 20 53)(17 54 21)(18 49 19)
(1 41 28)(2 8 5)(3 33 40)(4 44 31)(6 36 43)(7 38 34)(9 30 37)(10 26 53)(11 48 24)(12 18 15)(13 20 47)(14 51 27)(16 23 50)(17 54 21)(19 25 22)(29 35 32)(39 45 42)(46 52 49)
(1 44 34)(2 45 35)(3 37 36)(4 38 28)(5 39 29)(6 40 30)(7 41 31)(8 42 32)(9 43 33)(10 50 20)(11 51 21)(12 52 22)(13 53 23)(14 54 24)(15 46 25)(16 47 26)(17 48 27)(18 49 19)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,54)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38), (1,41,28)(2,45,35)(3,30,43)(4,44,31)(5,39,29)(6,33,37)(7,38,34)(8,42,32)(9,36,40)(10,23,47)(11,48,24)(12,52,22)(13,26,50)(14,51,27)(15,46,25)(16,20,53)(17,54,21)(18,49,19), (1,41,28)(2,8,5)(3,33,40)(4,44,31)(6,36,43)(7,38,34)(9,30,37)(10,26,53)(11,48,24)(12,18,15)(13,20,47)(14,51,27)(16,23,50)(17,54,21)(19,25,22)(29,35,32)(39,45,42)(46,52,49), (1,44,34)(2,45,35)(3,37,36)(4,38,28)(5,39,29)(6,40,30)(7,41,31)(8,42,32)(9,43,33)(10,50,20)(11,51,21)(12,52,22)(13,53,23)(14,54,24)(15,46,25)(16,47,26)(17,48,27)(18,49,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,54)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38), (1,41,28)(2,45,35)(3,30,43)(4,44,31)(5,39,29)(6,33,37)(7,38,34)(8,42,32)(9,36,40)(10,23,47)(11,48,24)(12,52,22)(13,26,50)(14,51,27)(15,46,25)(16,20,53)(17,54,21)(18,49,19), (1,41,28)(2,8,5)(3,33,40)(4,44,31)(6,36,43)(7,38,34)(9,30,37)(10,26,53)(11,48,24)(12,18,15)(13,20,47)(14,51,27)(16,23,50)(17,54,21)(19,25,22)(29,35,32)(39,45,42)(46,52,49), (1,44,34)(2,45,35)(3,37,36)(4,38,28)(5,39,29)(6,40,30)(7,41,31)(8,42,32)(9,43,33)(10,50,20)(11,51,21)(12,52,22)(13,53,23)(14,54,24)(15,46,25)(16,47,26)(17,48,27)(18,49,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,54),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,28),(18,29),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,37),(27,38)], [(1,41,28),(2,45,35),(3,30,43),(4,44,31),(5,39,29),(6,33,37),(7,38,34),(8,42,32),(9,36,40),(10,23,47),(11,48,24),(12,52,22),(13,26,50),(14,51,27),(15,46,25),(16,20,53),(17,54,21),(18,49,19)], [(1,41,28),(2,8,5),(3,33,40),(4,44,31),(6,36,43),(7,38,34),(9,30,37),(10,26,53),(11,48,24),(12,18,15),(13,20,47),(14,51,27),(16,23,50),(17,54,21),(19,25,22),(29,35,32),(39,45,42),(46,52,49)], [(1,44,34),(2,45,35),(3,37,36),(4,38,28),(5,39,29),(6,40,30),(7,41,31),(8,42,32),(9,43,33),(10,50,20),(11,51,21),(12,52,22),(13,53,23),(14,54,24),(15,46,25),(16,47,26),(17,48,27),(18,49,19)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

102 conjugacy classes

 class 1 2 3A ··· 3H 3I ··· 3AF 6A ··· 6H 6I ··· 6AF 9A ··· 9R 18A ··· 18R order 1 2 3 ··· 3 3 ··· 3 6 ··· 6 6 ··· 6 9 ··· 9 18 ··· 18 size 1 1 1 ··· 1 3 ··· 3 1 ··· 1 3 ··· 3 9 ··· 9 9 ··· 9

102 irreducible representations

 dim 1 1 1 1 1 1 1 1 3 3 3 3 3 3 type + + image C1 C2 C3 C3 C6 C6 C9 C18 He3 3- 1+2 C2×He3 C2×3- 1+2 C3≀C3 C2×C3≀C3 kernel C2×C33⋊C9 C33⋊C9 C2×C32⋊C9 C33×C6 C32⋊C9 C34 C32×C6 C33 C3×C6 C3×C6 C32 C32 C6 C3 # reps 1 1 6 2 6 2 18 18 2 4 2 4 18 18

Matrix representation of C2×C33⋊C9 in GL4(𝔽19) generated by

 18 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
,
 11 0 0 0 0 11 0 0 0 0 7 0 0 0 0 7
,
 1 0 0 0 0 11 0 0 0 0 1 0 0 0 0 7
,
 1 0 0 0 0 7 0 0 0 0 7 0 0 0 0 7
,
 9 0 0 0 0 0 1 0 0 0 0 1 0 11 0 0
G:=sub<GL(4,GF(19))| [18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[11,0,0,0,0,11,0,0,0,0,7,0,0,0,0,7],[1,0,0,0,0,11,0,0,0,0,1,0,0,0,0,7],[1,0,0,0,0,7,0,0,0,0,7,0,0,0,0,7],[9,0,0,0,0,0,0,11,0,1,0,0,0,0,1,0] >;

C2×C33⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes C_9
% in TeX

G:=Group("C2xC3^3:C9");
// GroupNames label

G:=SmallGroup(486,73);
// by ID

G=gap.SmallGroup(486,73);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,2169]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^9=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^-1*d,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
×
𝔽