extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1(C3×S3) = C34.7S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9):1(C3xS3) | 486,147 |
(C3×C9)⋊2(C3×S3) = He3.C3⋊2C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):2(C3xS3) | 486,177 |
(C3×C9)⋊3(C3×S3) = He3⋊(C3×S3) | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):3(C3xS3) | 486,178 |
(C3×C9)⋊4(C3×S3) = 3- 1+4⋊C2 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):4(C3xS3) | 486,238 |
(C3×C9)⋊5(C3×S3) = C34.C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9):5(C3xS3) | 486,104 |
(C3×C9)⋊6(C3×S3) = He3.C3⋊C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9):6(C3xS3) | 486,128 |
(C3×C9)⋊7(C3×S3) = He3.(C3×C6) | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9):7(C3xS3) | 486,130 |
(C3×C9)⋊8(C3×S3) = 3- 1+4⋊2C2 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9):8(C3xS3) | 486,239 |
(C3×C9)⋊9(C3×S3) = C3×C32⋊C18 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9):9(C3xS3) | 486,93 |
(C3×C9)⋊10(C3×S3) = C3×He3.C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):10(C3xS3) | 486,118 |
(C3×C9)⋊11(C3×S3) = C3×He3.2C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):11(C3xS3) | 486,121 |
(C3×C9)⋊12(C3×S3) = C3×C32⋊2D9 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9):12(C3xS3) | 486,135 |
(C3×C9)⋊13(C3×S3) = C3×He3.3S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):13(C3xS3) | 486,168 |
(C3×C9)⋊14(C3×S3) = C3×He3⋊S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):14(C3xS3) | 486,171 |
(C3×C9)⋊15(C3×S3) = C3×He3.4S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):15(C3xS3) | 486,234 |
(C3×C9)⋊16(C3×S3) = C3×He3.4C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):16(C3xS3) | 486,235 |
(C3×C9)⋊17(C3×S3) = C33⋊D9 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9):17(C3xS3) | 486,137 |
(C3×C9)⋊18(C3×S3) = C32⋊4D9⋊C3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9):18(C3xS3) | 486,170 |
(C3×C9)⋊19(C3×S3) = He3⋊C3⋊3S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9):19(C3xS3) | 486,173 |
(C3×C9)⋊20(C3×S3) = C3×C33.S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):20(C3xS3) | 486,232 |
(C3×C9)⋊21(C3×S3) = C34.11S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9):21(C3xS3) | 486,244 |
(C3×C9)⋊22(C3×S3) = C9○He3⋊3S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9):22(C3xS3) | 486,245 |
(C3×C9)⋊23(C3×S3) = C3⋊S3×3- 1+2 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):23(C3xS3) | 486,233 |
(C3×C9)⋊24(C3×S3) = S3×C32⋊C9 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | | (C3xC9):24(C3xS3) | 486,95 |
(C3×C9)⋊25(C3×S3) = S3×He3.C3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):25(C3xS3) | 486,120 |
(C3×C9)⋊26(C3×S3) = S3×He3⋊C3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):26(C3xS3) | 486,123 |
(C3×C9)⋊27(C3×S3) = C3×S3×3- 1+2 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | | (C3xC9):27(C3xS3) | 486,225 |
(C3×C9)⋊28(C3×S3) = S3×C9○He3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):28(C3xS3) | 486,226 |
(C3×C9)⋊29(C3×S3) = C3⋊S3×C3×C9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9):29(C3xS3) | 486,228 |
(C3×C9)⋊30(C3×S3) = C32×C9⋊S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9):30(C3xS3) | 486,227 |
(C3×C9)⋊31(C3×S3) = C3×C32⋊4D9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):31(C3xS3) | 486,240 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9).1(C3×S3) = C27⋊C18 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9).1(C3xS3) | 486,31 |
(C3×C9).2(C3×S3) = C9⋊C9.S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9).2(C3xS3) | 486,39 |
(C3×C9).3(C3×S3) = C9⋊C9.3S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9).3(C3xS3) | 486,40 |
(C3×C9).4(C3×S3) = C9⋊C9⋊S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9).4(C3xS3) | 486,41 |
(C3×C9).5(C3×S3) = C9⋊C9⋊2S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).5(C3xS3) | 486,152 |
(C3×C9).6(C3×S3) = C92⋊6S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9).6(C3xS3) | 486,153 |
(C3×C9).7(C3×S3) = C92⋊5S3 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).7(C3xS3) | 486,156 |
(C3×C9).8(C3×S3) = C3.He3⋊C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9).8(C3xS3) | 486,179 |
(C3×C9).9(C3×S3) = C9⋊He3⋊C2 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).9(C3xS3) | 486,107 |
(C3×C9).10(C3×S3) = D9⋊3- 1+2 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).10(C3xS3) | 486,108 |
(C3×C9).11(C3×S3) = C92⋊7C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).11(C3xS3) | 486,109 |
(C3×C9).12(C3×S3) = C92⋊8C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9).12(C3xS3) | 486,110 |
(C3×C9).13(C3×S3) = C3≀C3.C6 | φ: C3×S3/C1 → C3×S3 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).13(C3xS3) | 486,132 |
(C3×C9).14(C3×S3) = C3×C9⋊C18 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9).14(C3xS3) | 486,96 |
(C3×C9).15(C3×S3) = C9×C32⋊C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).15(C3xS3) | 486,98 |
(C3×C9).16(C3×S3) = C9×C9⋊C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).16(C3xS3) | 486,100 |
(C3×C9).17(C3×S3) = C92⋊S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).17(C3xS3) | 486,36 |
(C3×C9).18(C3×S3) = C92.S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).18(C3xS3) | 486,38 |
(C3×C9).19(C3×S3) = C92⋊4S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).19(C3xS3) | 486,140 |
(C3×C9).20(C3×S3) = (C32×C9)⋊S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).20(C3xS3) | 486,149 |
(C3×C9).21(C3×S3) = C3×3- 1+2.S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).21(C3xS3) | 486,174 |
(C3×C9).22(C3×S3) = C3×C27⋊C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).22(C3xS3) | 486,113 |
(C3×C9).23(C3×S3) = He3.C18 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).23(C3xS3) | 486,26 |
(C3×C9).24(C3×S3) = He3.2C18 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).24(C3xS3) | 486,28 |
(C3×C9).25(C3×S3) = C3≀S3⋊3C3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).25(C3xS3) | 486,125 |
(C3×C9).26(C3×S3) = He3.5C18 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).26(C3xS3) | 486,164 |
(C3×C9).27(C3×S3) = C92⋊C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).27(C3xS3) | 486,35 |
(C3×C9).28(C3×S3) = C92⋊2C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).28(C3xS3) | 486,37 |
(C3×C9).29(C3×S3) = C92⋊3C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).29(C3xS3) | 486,141 |
(C3×C9).30(C3×S3) = C9⋊He3⋊2C2 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).30(C3xS3) | 486,148 |
(C3×C9).31(C3×S3) = (C32×C9)⋊C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).31(C3xS3) | 486,151 |
(C3×C9).32(C3×S3) = C92⋊4C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).32(C3xS3) | 486,155 |
(C3×C9).33(C3×S3) = C92⋊5C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).33(C3xS3) | 486,157 |
(C3×C9).34(C3×S3) = C92⋊11C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).34(C3xS3) | 486,158 |
(C3×C9).35(C3×S3) = C3≀C3.S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).35(C3xS3) | 486,175 |
(C3×C9).36(C3×S3) = He3.D9 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).36(C3xS3) | 486,27 |
(C3×C9).37(C3×S3) = He3.2D9 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).37(C3xS3) | 486,29 |
(C3×C9).38(C3×S3) = C9⋊(S3×C9) | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9).38(C3xS3) | 486,138 |
(C3×C9).39(C3×S3) = C92⋊3S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).39(C3xS3) | 486,139 |
(C3×C9).40(C3×S3) = C92⋊10C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).40(C3xS3) | 486,154 |
(C3×C9).41(C3×S3) = C92⋊12C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | | (C3xC9).41(C3xS3) | 486,159 |
(C3×C9).42(C3×S3) = He3.5D9 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).42(C3xS3) | 486,163 |
(C3×C9).43(C3×S3) = D9×3- 1+2 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).43(C3xS3) | 486,101 |
(C3×C9).44(C3×S3) = S3×C9⋊C9 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).44(C3xS3) | 486,97 |
(C3×C9).45(C3×S3) = S3×C3.He3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).45(C3xS3) | 486,124 |
(C3×C9).46(C3×S3) = S3×C27⋊C3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).46(C3xS3) | 486,114 |
(C3×C9).47(C3×S3) = D9×C27 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 2 | (C3xC9).47(C3xS3) | 486,14 |
(C3×C9).48(C3×S3) = C32⋊C54 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).48(C3xS3) | 486,16 |
(C3×C9).49(C3×S3) = C9⋊C54 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).49(C3xS3) | 486,30 |
(C3×C9).50(C3×S3) = D9×C3×C9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9).50(C3xS3) | 486,91 |
(C3×C9).51(C3×S3) = C3⋊S3×C27 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).51(C3xS3) | 486,161 |
(C3×C9).52(C3×S3) = C9×D27 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 2 | (C3xC9).52(C3xS3) | 486,13 |
(C3×C9).53(C3×S3) = C27⋊3C18 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).53(C3xS3) | 486,15 |
(C3×C9).54(C3×S3) = C32⋊D27 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 81 | | (C3xC9).54(C3xS3) | 486,17 |
(C3×C9).55(C3×S3) = C32×D27 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).55(C3xS3) | 486,111 |
(C3×C9).56(C3×S3) = C9×C9⋊S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9).56(C3xS3) | 486,133 |
(C3×C9).57(C3×S3) = C3×C9⋊D9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).57(C3xS3) | 486,134 |
(C3×C9).58(C3×S3) = He3⋊3D9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 81 | | (C3xC9).58(C3xS3) | 486,142 |
(C3×C9).59(C3×S3) = C92⋊9C6 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 81 | | (C3xC9).59(C3xS3) | 486,144 |
(C3×C9).60(C3×S3) = C3×C27⋊S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).60(C3xS3) | 486,160 |
(C3×C9).61(C3×S3) = C33.5D9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C9 | 81 | | (C3xC9).61(C3xS3) | 486,162 |
(C3×C9).62(C3×S3) = S3×C92 | central extension (φ=1) | 162 | | (C3xC9).62(C3xS3) | 486,92 |
(C3×C9).63(C3×S3) = S3×C3×C27 | central extension (φ=1) | 162 | | (C3xC9).63(C3xS3) | 486,112 |