extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1(C3⋊S3) = C33⋊C18 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9):1(C3:S3) | 486,136 |
(C3×C9)⋊2(C3⋊S3) = He3.C3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):2(C3:S3) | 486,169 |
(C3×C9)⋊3(C3⋊S3) = He3⋊C3⋊2S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):3(C3:S3) | 486,172 |
(C3×C9)⋊4(C3⋊S3) = C33⋊6D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9):4(C3:S3) | 486,181 |
(C3×C9)⋊5(C3⋊S3) = He3.(C3⋊S3) | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):5(C3:S3) | 486,186 |
(C3×C9)⋊6(C3⋊S3) = C3⋊(He3⋊S3) | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):6(C3:S3) | 486,187 |
(C3×C9)⋊7(C3⋊S3) = C9○He3⋊3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):7(C3:S3) | 486,245 |
(C3×C9)⋊8(C3⋊S3) = C9○He3⋊4S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):8(C3:S3) | 486,246 |
(C3×C9)⋊9(C3⋊S3) = C9×C33⋊C2 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):9(C3:S3) | 486,241 |
(C3×C9)⋊10(C3⋊S3) = C3×C32⋊4D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):10(C3:S3) | 486,240 |
(C3×C9)⋊11(C3⋊S3) = C33⋊9D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9):11(C3:S3) | 486,247 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9).1(C3⋊S3) = C92⋊2S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).1(C3:S3) | 486,61 |
(C3×C9).2(C3⋊S3) = C9⋊(S3×C9) | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9).2(C3:S3) | 486,138 |
(C3×C9).3(C3⋊S3) = C92⋊3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).3(C3:S3) | 486,139 |
(C3×C9).4(C3⋊S3) = (C32×C9)⋊8S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).4(C3:S3) | 486,150 |
(C3×C9).5(C3⋊S3) = C9⋊C9⋊2S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).5(C3:S3) | 486,152 |
(C3×C9).6(C3⋊S3) = C92⋊6S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9).6(C3:S3) | 486,153 |
(C3×C9).7(C3⋊S3) = C92⋊5S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).7(C3:S3) | 486,156 |
(C3×C9).8(C3⋊S3) = (C32×C9).S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9).8(C3:S3) | 486,188 |
(C3×C9).9(C3⋊S3) = C33.D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).9(C3:S3) | 486,55 |
(C3×C9).10(C3⋊S3) = He3.3D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).10(C3:S3) | 486,58 |
(C3×C9).11(C3⋊S3) = He3.4D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).11(C3:S3) | 486,59 |
(C3×C9).12(C3⋊S3) = C33.5D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9).12(C3:S3) | 486,162 |
(C3×C9).13(C3⋊S3) = He3.5D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).13(C3:S3) | 486,163 |
(C3×C9).14(C3⋊S3) = C3≀C3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).14(C3:S3) | 486,189 |
(C3×C9).15(C3⋊S3) = C9×C9⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9).15(C3:S3) | 486,133 |
(C3×C9).16(C3⋊S3) = C92⋊4S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).16(C3:S3) | 486,140 |
(C3×C9).17(C3⋊S3) = C9⋊D27 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).17(C3:S3) | 486,50 |
(C3×C9).18(C3⋊S3) = C32⋊2D27 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).18(C3:S3) | 486,51 |
(C3×C9).19(C3⋊S3) = C3×C27⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).19(C3:S3) | 486,160 |
(C3×C9).20(C3⋊S3) = C92⋊8S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).20(C3:S3) | 486,180 |
(C3×C9).21(C3⋊S3) = He3⋊4D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).21(C3:S3) | 486,182 |
(C3×C9).22(C3⋊S3) = C32⋊4D27 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).22(C3:S3) | 486,184 |
(C3×C9).23(C3⋊S3) = C9×He3⋊C2 | central extension (φ=1) | 81 | | (C3xC9).23(C3:S3) | 486,143 |
(C3×C9).24(C3⋊S3) = C3×He3.4C6 | central extension (φ=1) | 81 | | (C3xC9).24(C3:S3) | 486,235 |