Copied to
clipboard

G = C12.11S4order 288 = 25·32

11st non-split extension by C12 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C12.11S4, Q8.4D18, C4○D41D9, Q8⋊D93C2, C6.23(C2×S4), Q8.D93C2, C3.(C4.6S4), C4.6(C3.S4), Q8.C182C2, (C3×Q8).12D6, Q8⋊C9.4C22, C2.9(C2×C3.S4), (C3×C4○D4).3S3, SmallGroup(288,339)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C12.11S4
C1C2Q8C3×Q8Q8⋊C9Q8⋊D9 — C12.11S4
Q8⋊C9 — C12.11S4
C1C4

Generators and relations for C12.11S4
 G = < a,b,c,d,e | a12=e2=1, b2=c2=a6, d3=a4, ab=ba, ac=ca, ad=da, eae=a5, cbc-1=a6b, dbd-1=a6bc, ebe=bc, dcd-1=b, ece=a6c, ede=a8d2 >

Subgroups: 359 in 65 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C9, Dic3, C12, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, D9, C18, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×Q8, C4○D8, Dic9, C36, D18, C2×C3⋊C8, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C4○D12, C3×C4○D4, Q8⋊C9, C4×D9, Q8.13D6, Q8.D9, Q8⋊D9, Q8.C18, C12.11S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, C2×S4, C3.S4, C4.6S4, C2×C3.S4, C12.11S4

Character table of C12.11S4

 class 12A2B2C34A4B4C4D6A6B8A8B8C8D9A9B9C12A12B12C18A18B18C36A36B36C36D36E36F
 size 11636211636212181818188882212888888888
ρ1111111111111111111111111111111    trivial
ρ211-111-1-11-11-1-11-11111-1-11111-1-1-1-1-1-1    linear of order 2
ρ311-1-11-1-1111-11-11-1111-1-11111-1-1-1-1-1-1    linear of order 2
ρ4111-11111-111-1-1-1-1111111111111111    linear of order 2
ρ5222022220220000-1-1-1222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ622-202-2-2202-20000-1-1-1-2-22-1-1-1111111    orthogonal lifted from D6
ρ72220-12220-1-10000ζ989ζ9792ζ9594-1-1-1ζ989ζ9594ζ9792ζ989ζ989ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ82220-12220-1-10000ζ9792ζ9594ζ989-1-1-1ζ9792ζ989ζ9594ζ9792ζ9792ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ922-20-1-2-220-110000ζ989ζ9792ζ959411-1ζ989ζ9594ζ97929899899792979295949594    orthogonal lifted from D18
ρ1022-20-1-2-220-110000ζ9594ζ989ζ979211-1ζ9594ζ9792ζ9899594959498998997929792    orthogonal lifted from D18
ρ112220-12220-1-10000ζ9594ζ989ζ9792-1-1-1ζ9594ζ9792ζ989ζ9594ζ9594ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ1222-20-1-2-220-110000ζ9792ζ9594ζ98911-1ζ9792ζ989ζ95949792979295949594989989    orthogonal lifted from D18
ρ132-20022i-2i00-20-2--22-2-1-1-1-2i2i0111-ii-ii-ii    complex lifted from C4.6S4
ρ142-2002-2i2i00-20-2-22--2-1-1-12i-2i0111i-ii-ii-i    complex lifted from C4.6S4
ρ152-2002-2i2i00-202--2-2-2-1-1-12i-2i0111i-ii-ii-i    complex lifted from C4.6S4
ρ162-20022i-2i00-202-2-2--2-1-1-1-2i2i0111-ii-ii-ii    complex lifted from C4.6S4
ρ1733113-3-3-1-1311-11-1000-3-3-1000000000    orthogonal lifted from C2×S4
ρ1833-1-1333-1-13-1111100033-1000000000    orthogonal lifted from S4
ρ1933-11333-113-1-1-1-1-100033-1000000000    orthogonal lifted from S4
ρ20331-13-3-3-1131-11-11000-3-3-1000000000    orthogonal lifted from C2×S4
ρ214-40044i-4i00-400000111-4i4i0-1-1-1i-ii-ii-i    complex lifted from C4.6S4
ρ224-4004-4i4i00-4000001114i-4i0-1-1-1-ii-ii-ii    complex lifted from C4.6S4
ρ234-400-24i-4i00200000959498997922i-2i0ζ9594ζ9792ζ989ζ43ζ9543ζ94ζ4ζ954ζ94ζ43ζ9843ζ9ζ4ζ984ζ9ζ43ζ9743ζ92ζ4ζ974ζ92    complex faithful
ρ244-400-24i-4i00200000989979295942i-2i0ζ989ζ9594ζ9792ζ43ζ9843ζ9ζ4ζ984ζ9ζ43ζ9743ζ92ζ4ζ974ζ92ζ43ζ9543ζ94ζ4ζ954ζ94    complex faithful
ρ254-400-2-4i4i0020000097929594989-2i2i0ζ9792ζ989ζ9594ζ4ζ974ζ92ζ43ζ9743ζ92ζ4ζ954ζ94ζ43ζ9543ζ94ζ4ζ984ζ9ζ43ζ9843ζ9    complex faithful
ρ264-400-2-4i4i0020000098997929594-2i2i0ζ989ζ9594ζ9792ζ4ζ984ζ9ζ43ζ9843ζ9ζ4ζ974ζ92ζ43ζ9743ζ92ζ4ζ954ζ94ζ43ζ9543ζ94    complex faithful
ρ274-400-24i-4i00200000979295949892i-2i0ζ9792ζ989ζ9594ζ43ζ9743ζ92ζ4ζ974ζ92ζ43ζ9543ζ94ζ4ζ954ζ94ζ43ζ9843ζ9ζ4ζ984ζ9    complex faithful
ρ284-400-2-4i4i0020000095949899792-2i2i0ζ9594ζ9792ζ989ζ4ζ954ζ94ζ43ζ9543ζ94ζ4ζ984ζ9ζ43ζ9843ζ9ζ4ζ974ζ92ζ43ζ9743ζ92    complex faithful
ρ296620-3-6-6-20-3-10000000331000000000    orthogonal lifted from C2×C3.S4
ρ3066-20-366-20-310000000-3-31000000000    orthogonal lifted from C3.S4

Smallest permutation representation of C12.11S4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 27 7 33)(2 28 8 34)(3 29 9 35)(4 30 10 36)(5 31 11 25)(6 32 12 26)(13 80 19 74)(14 81 20 75)(15 82 21 76)(16 83 22 77)(17 84 23 78)(18 73 24 79)(37 119 43 113)(38 120 44 114)(39 109 45 115)(40 110 46 116)(41 111 47 117)(42 112 48 118)(49 129 55 123)(50 130 56 124)(51 131 57 125)(52 132 58 126)(53 121 59 127)(54 122 60 128)(61 87 67 93)(62 88 68 94)(63 89 69 95)(64 90 70 96)(65 91 71 85)(66 92 72 86)(97 138 103 144)(98 139 104 133)(99 140 105 134)(100 141 106 135)(101 142 107 136)(102 143 108 137)
(1 87 7 93)(2 88 8 94)(3 89 9 95)(4 90 10 96)(5 91 11 85)(6 92 12 86)(13 50 19 56)(14 51 20 57)(15 52 21 58)(16 53 22 59)(17 54 23 60)(18 55 24 49)(25 71 31 65)(26 72 32 66)(27 61 33 67)(28 62 34 68)(29 63 35 69)(30 64 36 70)(37 139 43 133)(38 140 44 134)(39 141 45 135)(40 142 46 136)(41 143 47 137)(42 144 48 138)(73 129 79 123)(74 130 80 124)(75 131 81 125)(76 132 82 126)(77 121 83 127)(78 122 84 128)(97 112 103 118)(98 113 104 119)(99 114 105 120)(100 115 106 109)(101 116 107 110)(102 117 108 111)
(1 23 139 5 15 143 9 19 135)(2 24 140 6 16 144 10 20 136)(3 13 141 7 17 133 11 21 137)(4 14 142 8 18 134 12 22 138)(25 58 111 29 50 115 33 54 119)(26 59 112 30 51 116 34 55 120)(27 60 113 31 52 117 35 56 109)(28 49 114 32 53 118 36 57 110)(37 65 76 41 69 80 45 61 84)(38 66 77 42 70 81 46 62 73)(39 67 78 43 71 82 47 63 74)(40 68 79 44 72 83 48 64 75)(85 126 102 89 130 106 93 122 98)(86 127 103 90 131 107 94 123 99)(87 128 104 91 132 108 95 124 100)(88 129 105 92 121 97 96 125 101)
(2 6)(3 11)(5 9)(8 12)(13 133)(14 138)(15 143)(16 136)(17 141)(18 134)(19 139)(20 144)(21 137)(22 142)(23 135)(24 140)(25 63)(26 68)(27 61)(28 66)(29 71)(30 64)(31 69)(32 62)(33 67)(34 72)(35 65)(36 70)(37 56)(38 49)(39 54)(40 59)(41 52)(42 57)(43 50)(44 55)(45 60)(46 53)(47 58)(48 51)(73 114)(74 119)(75 112)(76 117)(77 110)(78 115)(79 120)(80 113)(81 118)(82 111)(83 116)(84 109)(85 95)(86 88)(87 93)(89 91)(90 96)(92 94)(97 131)(98 124)(99 129)(100 122)(101 127)(102 132)(103 125)(104 130)(105 123)(106 128)(107 121)(108 126)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,80,19,74)(14,81,20,75)(15,82,21,76)(16,83,22,77)(17,84,23,78)(18,73,24,79)(37,119,43,113)(38,120,44,114)(39,109,45,115)(40,110,46,116)(41,111,47,117)(42,112,48,118)(49,129,55,123)(50,130,56,124)(51,131,57,125)(52,132,58,126)(53,121,59,127)(54,122,60,128)(61,87,67,93)(62,88,68,94)(63,89,69,95)(64,90,70,96)(65,91,71,85)(66,92,72,86)(97,138,103,144)(98,139,104,133)(99,140,105,134)(100,141,106,135)(101,142,107,136)(102,143,108,137), (1,87,7,93)(2,88,8,94)(3,89,9,95)(4,90,10,96)(5,91,11,85)(6,92,12,86)(13,50,19,56)(14,51,20,57)(15,52,21,58)(16,53,22,59)(17,54,23,60)(18,55,24,49)(25,71,31,65)(26,72,32,66)(27,61,33,67)(28,62,34,68)(29,63,35,69)(30,64,36,70)(37,139,43,133)(38,140,44,134)(39,141,45,135)(40,142,46,136)(41,143,47,137)(42,144,48,138)(73,129,79,123)(74,130,80,124)(75,131,81,125)(76,132,82,126)(77,121,83,127)(78,122,84,128)(97,112,103,118)(98,113,104,119)(99,114,105,120)(100,115,106,109)(101,116,107,110)(102,117,108,111), (1,23,139,5,15,143,9,19,135)(2,24,140,6,16,144,10,20,136)(3,13,141,7,17,133,11,21,137)(4,14,142,8,18,134,12,22,138)(25,58,111,29,50,115,33,54,119)(26,59,112,30,51,116,34,55,120)(27,60,113,31,52,117,35,56,109)(28,49,114,32,53,118,36,57,110)(37,65,76,41,69,80,45,61,84)(38,66,77,42,70,81,46,62,73)(39,67,78,43,71,82,47,63,74)(40,68,79,44,72,83,48,64,75)(85,126,102,89,130,106,93,122,98)(86,127,103,90,131,107,94,123,99)(87,128,104,91,132,108,95,124,100)(88,129,105,92,121,97,96,125,101), (2,6)(3,11)(5,9)(8,12)(13,133)(14,138)(15,143)(16,136)(17,141)(18,134)(19,139)(20,144)(21,137)(22,142)(23,135)(24,140)(25,63)(26,68)(27,61)(28,66)(29,71)(30,64)(31,69)(32,62)(33,67)(34,72)(35,65)(36,70)(37,56)(38,49)(39,54)(40,59)(41,52)(42,57)(43,50)(44,55)(45,60)(46,53)(47,58)(48,51)(73,114)(74,119)(75,112)(76,117)(77,110)(78,115)(79,120)(80,113)(81,118)(82,111)(83,116)(84,109)(85,95)(86,88)(87,93)(89,91)(90,96)(92,94)(97,131)(98,124)(99,129)(100,122)(101,127)(102,132)(103,125)(104,130)(105,123)(106,128)(107,121)(108,126)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,80,19,74)(14,81,20,75)(15,82,21,76)(16,83,22,77)(17,84,23,78)(18,73,24,79)(37,119,43,113)(38,120,44,114)(39,109,45,115)(40,110,46,116)(41,111,47,117)(42,112,48,118)(49,129,55,123)(50,130,56,124)(51,131,57,125)(52,132,58,126)(53,121,59,127)(54,122,60,128)(61,87,67,93)(62,88,68,94)(63,89,69,95)(64,90,70,96)(65,91,71,85)(66,92,72,86)(97,138,103,144)(98,139,104,133)(99,140,105,134)(100,141,106,135)(101,142,107,136)(102,143,108,137), (1,87,7,93)(2,88,8,94)(3,89,9,95)(4,90,10,96)(5,91,11,85)(6,92,12,86)(13,50,19,56)(14,51,20,57)(15,52,21,58)(16,53,22,59)(17,54,23,60)(18,55,24,49)(25,71,31,65)(26,72,32,66)(27,61,33,67)(28,62,34,68)(29,63,35,69)(30,64,36,70)(37,139,43,133)(38,140,44,134)(39,141,45,135)(40,142,46,136)(41,143,47,137)(42,144,48,138)(73,129,79,123)(74,130,80,124)(75,131,81,125)(76,132,82,126)(77,121,83,127)(78,122,84,128)(97,112,103,118)(98,113,104,119)(99,114,105,120)(100,115,106,109)(101,116,107,110)(102,117,108,111), (1,23,139,5,15,143,9,19,135)(2,24,140,6,16,144,10,20,136)(3,13,141,7,17,133,11,21,137)(4,14,142,8,18,134,12,22,138)(25,58,111,29,50,115,33,54,119)(26,59,112,30,51,116,34,55,120)(27,60,113,31,52,117,35,56,109)(28,49,114,32,53,118,36,57,110)(37,65,76,41,69,80,45,61,84)(38,66,77,42,70,81,46,62,73)(39,67,78,43,71,82,47,63,74)(40,68,79,44,72,83,48,64,75)(85,126,102,89,130,106,93,122,98)(86,127,103,90,131,107,94,123,99)(87,128,104,91,132,108,95,124,100)(88,129,105,92,121,97,96,125,101), (2,6)(3,11)(5,9)(8,12)(13,133)(14,138)(15,143)(16,136)(17,141)(18,134)(19,139)(20,144)(21,137)(22,142)(23,135)(24,140)(25,63)(26,68)(27,61)(28,66)(29,71)(30,64)(31,69)(32,62)(33,67)(34,72)(35,65)(36,70)(37,56)(38,49)(39,54)(40,59)(41,52)(42,57)(43,50)(44,55)(45,60)(46,53)(47,58)(48,51)(73,114)(74,119)(75,112)(76,117)(77,110)(78,115)(79,120)(80,113)(81,118)(82,111)(83,116)(84,109)(85,95)(86,88)(87,93)(89,91)(90,96)(92,94)(97,131)(98,124)(99,129)(100,122)(101,127)(102,132)(103,125)(104,130)(105,123)(106,128)(107,121)(108,126) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,27,7,33),(2,28,8,34),(3,29,9,35),(4,30,10,36),(5,31,11,25),(6,32,12,26),(13,80,19,74),(14,81,20,75),(15,82,21,76),(16,83,22,77),(17,84,23,78),(18,73,24,79),(37,119,43,113),(38,120,44,114),(39,109,45,115),(40,110,46,116),(41,111,47,117),(42,112,48,118),(49,129,55,123),(50,130,56,124),(51,131,57,125),(52,132,58,126),(53,121,59,127),(54,122,60,128),(61,87,67,93),(62,88,68,94),(63,89,69,95),(64,90,70,96),(65,91,71,85),(66,92,72,86),(97,138,103,144),(98,139,104,133),(99,140,105,134),(100,141,106,135),(101,142,107,136),(102,143,108,137)], [(1,87,7,93),(2,88,8,94),(3,89,9,95),(4,90,10,96),(5,91,11,85),(6,92,12,86),(13,50,19,56),(14,51,20,57),(15,52,21,58),(16,53,22,59),(17,54,23,60),(18,55,24,49),(25,71,31,65),(26,72,32,66),(27,61,33,67),(28,62,34,68),(29,63,35,69),(30,64,36,70),(37,139,43,133),(38,140,44,134),(39,141,45,135),(40,142,46,136),(41,143,47,137),(42,144,48,138),(73,129,79,123),(74,130,80,124),(75,131,81,125),(76,132,82,126),(77,121,83,127),(78,122,84,128),(97,112,103,118),(98,113,104,119),(99,114,105,120),(100,115,106,109),(101,116,107,110),(102,117,108,111)], [(1,23,139,5,15,143,9,19,135),(2,24,140,6,16,144,10,20,136),(3,13,141,7,17,133,11,21,137),(4,14,142,8,18,134,12,22,138),(25,58,111,29,50,115,33,54,119),(26,59,112,30,51,116,34,55,120),(27,60,113,31,52,117,35,56,109),(28,49,114,32,53,118,36,57,110),(37,65,76,41,69,80,45,61,84),(38,66,77,42,70,81,46,62,73),(39,67,78,43,71,82,47,63,74),(40,68,79,44,72,83,48,64,75),(85,126,102,89,130,106,93,122,98),(86,127,103,90,131,107,94,123,99),(87,128,104,91,132,108,95,124,100),(88,129,105,92,121,97,96,125,101)], [(2,6),(3,11),(5,9),(8,12),(13,133),(14,138),(15,143),(16,136),(17,141),(18,134),(19,139),(20,144),(21,137),(22,142),(23,135),(24,140),(25,63),(26,68),(27,61),(28,66),(29,71),(30,64),(31,69),(32,62),(33,67),(34,72),(35,65),(36,70),(37,56),(38,49),(39,54),(40,59),(41,52),(42,57),(43,50),(44,55),(45,60),(46,53),(47,58),(48,51),(73,114),(74,119),(75,112),(76,117),(77,110),(78,115),(79,120),(80,113),(81,118),(82,111),(83,116),(84,109),(85,95),(86,88),(87,93),(89,91),(90,96),(92,94),(97,131),(98,124),(99,129),(100,122),(101,127),(102,132),(103,125),(104,130),(105,123),(106,128),(107,121),(108,126)]])

Matrix representation of C12.11S4 in GL4(𝔽73) generated by

46000
04600
00072
0011
,
617200
721200
0010
0001
,
16100
617200
0010
0001
,
5700
66700
007028
004542
,
1000
617200
007042
00453
G:=sub<GL(4,GF(73))| [46,0,0,0,0,46,0,0,0,0,0,1,0,0,72,1],[61,72,0,0,72,12,0,0,0,0,1,0,0,0,0,1],[1,61,0,0,61,72,0,0,0,0,1,0,0,0,0,1],[5,6,0,0,7,67,0,0,0,0,70,45,0,0,28,42],[1,61,0,0,0,72,0,0,0,0,70,45,0,0,42,3] >;

C12.11S4 in GAP, Magma, Sage, TeX

C_{12}._{11}S_4
% in TeX

G:=Group("C12.11S4");
// GroupNames label

G:=SmallGroup(288,339);
// by ID

G=gap.SmallGroup(288,339);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1016,422,142,675,2524,1908,172,1517,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=e^2=1,b^2=c^2=a^6,d^3=a^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^5,c*b*c^-1=a^6*b,d*b*d^-1=a^6*b*c,e*b*e=b*c,d*c*d^-1=b,e*c*e=a^6*c,e*d*e=a^8*d^2>;
// generators/relations

Export

Character table of C12.11S4 in TeX

׿
×
𝔽