Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D5

Direct product G=N×Q with N=C2×C4 and Q=D5
dρLabelID
C2×C4×D540C2xC4xD580,36

Semidirect products G=N:Q with N=C2×C4 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D5 = D10⋊C4φ: D5/C5C2 ⊆ Aut C2×C440(C2xC4):1D580,14
(C2×C4)⋊2D5 = C2×D20φ: D5/C5C2 ⊆ Aut C2×C440(C2xC4):2D580,37
(C2×C4)⋊3D5 = C4○D20φ: D5/C5C2 ⊆ Aut C2×C4402(C2xC4):3D580,38

Non-split extensions G=N.Q with N=C2×C4 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D5 = C10.D4φ: D5/C5C2 ⊆ Aut C2×C480(C2xC4).1D580,12
(C2×C4).2D5 = C4.Dic5φ: D5/C5C2 ⊆ Aut C2×C4402(C2xC4).2D580,10
(C2×C4).3D5 = C4⋊Dic5φ: D5/C5C2 ⊆ Aut C2×C480(C2xC4).3D580,13
(C2×C4).4D5 = C2×Dic10φ: D5/C5C2 ⊆ Aut C2×C480(C2xC4).4D580,35
(C2×C4).5D5 = C2×C52C8central extension (φ=1)80(C2xC4).5D580,9
(C2×C4).6D5 = C4×Dic5central extension (φ=1)80(C2xC4).6D580,11

׿
×
𝔽