Extensions 1→N→G→Q→1 with N=C6 and Q=D10

Direct product G=N×Q with N=C6 and Q=D10
dρLabelID
D5×C2×C660D5xC2xC6120,44

Semidirect products G=N:Q with N=C6 and Q=D10
extensionφ:Q→Aut NdρLabelID
C61D10 = C2×S3×D5φ: D10/D5C2 ⊆ Aut C6304+C6:1D10120,42
C62D10 = C22×D15φ: D10/C10C2 ⊆ Aut C660C6:2D10120,46

Non-split extensions G=N.Q with N=C6 and Q=D10
extensionφ:Q→Aut NdρLabelID
C6.1D10 = D5×Dic3φ: D10/D5C2 ⊆ Aut C6604-C6.1D10120,8
C6.2D10 = S3×Dic5φ: D10/D5C2 ⊆ Aut C6604-C6.2D10120,9
C6.3D10 = D30.C2φ: D10/D5C2 ⊆ Aut C6604+C6.3D10120,10
C6.4D10 = C15⋊D4φ: D10/D5C2 ⊆ Aut C6604-C6.4D10120,11
C6.5D10 = C3⋊D20φ: D10/D5C2 ⊆ Aut C6604+C6.5D10120,12
C6.6D10 = C5⋊D12φ: D10/D5C2 ⊆ Aut C6604+C6.6D10120,13
C6.7D10 = C15⋊Q8φ: D10/D5C2 ⊆ Aut C61204-C6.7D10120,14
C6.8D10 = Dic30φ: D10/C10C2 ⊆ Aut C61202-C6.8D10120,26
C6.9D10 = C4×D15φ: D10/C10C2 ⊆ Aut C6602C6.9D10120,27
C6.10D10 = D60φ: D10/C10C2 ⊆ Aut C6602+C6.10D10120,28
C6.11D10 = C2×Dic15φ: D10/C10C2 ⊆ Aut C6120C6.11D10120,29
C6.12D10 = C157D4φ: D10/C10C2 ⊆ Aut C6602C6.12D10120,30
C6.13D10 = C3×Dic10central extension (φ=1)1202C6.13D10120,16
C6.14D10 = D5×C12central extension (φ=1)602C6.14D10120,17
C6.15D10 = C3×D20central extension (φ=1)602C6.15D10120,18
C6.16D10 = C6×Dic5central extension (φ=1)120C6.16D10120,19
C6.17D10 = C3×C5⋊D4central extension (φ=1)602C6.17D10120,20

׿
×
𝔽