extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1D6 = D5×Dic3 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4- | C10.1D6 | 120,8 |
C10.2D6 = S3×Dic5 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4- | C10.2D6 | 120,9 |
C10.3D6 = D30.C2 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4+ | C10.3D6 | 120,10 |
C10.4D6 = C15⋊D4 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4- | C10.4D6 | 120,11 |
C10.5D6 = C3⋊D20 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4+ | C10.5D6 | 120,12 |
C10.6D6 = C5⋊D12 | φ: D6/S3 → C2 ⊆ Aut C10 | 60 | 4+ | C10.6D6 | 120,13 |
C10.7D6 = C15⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C10 | 120 | 4- | C10.7D6 | 120,14 |
C10.8D6 = Dic30 | φ: D6/C6 → C2 ⊆ Aut C10 | 120 | 2- | C10.8D6 | 120,26 |
C10.9D6 = C4×D15 | φ: D6/C6 → C2 ⊆ Aut C10 | 60 | 2 | C10.9D6 | 120,27 |
C10.10D6 = D60 | φ: D6/C6 → C2 ⊆ Aut C10 | 60 | 2+ | C10.10D6 | 120,28 |
C10.11D6 = C2×Dic15 | φ: D6/C6 → C2 ⊆ Aut C10 | 120 | | C10.11D6 | 120,29 |
C10.12D6 = C15⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C10 | 60 | 2 | C10.12D6 | 120,30 |
C10.13D6 = C5×Dic6 | central extension (φ=1) | 120 | 2 | C10.13D6 | 120,21 |
C10.14D6 = S3×C20 | central extension (φ=1) | 60 | 2 | C10.14D6 | 120,22 |
C10.15D6 = C5×D12 | central extension (φ=1) | 60 | 2 | C10.15D6 | 120,23 |
C10.16D6 = C10×Dic3 | central extension (φ=1) | 120 | | C10.16D6 | 120,24 |
C10.17D6 = C5×C3⋊D4 | central extension (φ=1) | 60 | 2 | C10.17D6 | 120,25 |