Extensions 1→N→G→Q→1 with N=C10 and Q=D6

Direct product G=N×Q with N=C10 and Q=D6
dρLabelID
S3×C2×C1060S3xC2xC10120,45

Semidirect products G=N:Q with N=C10 and Q=D6
extensionφ:Q→Aut NdρLabelID
C101D6 = C2×S3×D5φ: D6/S3C2 ⊆ Aut C10304+C10:1D6120,42
C102D6 = C22×D15φ: D6/C6C2 ⊆ Aut C1060C10:2D6120,46

Non-split extensions G=N.Q with N=C10 and Q=D6
extensionφ:Q→Aut NdρLabelID
C10.1D6 = D5×Dic3φ: D6/S3C2 ⊆ Aut C10604-C10.1D6120,8
C10.2D6 = S3×Dic5φ: D6/S3C2 ⊆ Aut C10604-C10.2D6120,9
C10.3D6 = D30.C2φ: D6/S3C2 ⊆ Aut C10604+C10.3D6120,10
C10.4D6 = C15⋊D4φ: D6/S3C2 ⊆ Aut C10604-C10.4D6120,11
C10.5D6 = C3⋊D20φ: D6/S3C2 ⊆ Aut C10604+C10.5D6120,12
C10.6D6 = C5⋊D12φ: D6/S3C2 ⊆ Aut C10604+C10.6D6120,13
C10.7D6 = C15⋊Q8φ: D6/S3C2 ⊆ Aut C101204-C10.7D6120,14
C10.8D6 = Dic30φ: D6/C6C2 ⊆ Aut C101202-C10.8D6120,26
C10.9D6 = C4×D15φ: D6/C6C2 ⊆ Aut C10602C10.9D6120,27
C10.10D6 = D60φ: D6/C6C2 ⊆ Aut C10602+C10.10D6120,28
C10.11D6 = C2×Dic15φ: D6/C6C2 ⊆ Aut C10120C10.11D6120,29
C10.12D6 = C157D4φ: D6/C6C2 ⊆ Aut C10602C10.12D6120,30
C10.13D6 = C5×Dic6central extension (φ=1)1202C10.13D6120,21
C10.14D6 = S3×C20central extension (φ=1)602C10.14D6120,22
C10.15D6 = C5×D12central extension (φ=1)602C10.15D6120,23
C10.16D6 = C10×Dic3central extension (φ=1)120C10.16D6120,24
C10.17D6 = C5×C3⋊D4central extension (φ=1)602C10.17D6120,25

׿
×
𝔽