extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xD4:S3):1C2 = D12.3D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | 8+ | (C2xD4:S3):1C2 | 192,308 |
(C2xD4:S3):2C2 = D4:D12 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):2C2 | 192,332 |
(C2xD4:S3):3C2 = D6:D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):3C2 | 192,334 |
(C2xD4:S3):4C2 = D4:3D12 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):4C2 | 192,340 |
(C2xD4:S3):5C2 = C3:C8:D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):5C2 | 192,341 |
(C2xD4:S3):6C2 = D12:3D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):6C2 | 192,345 |
(C2xD4:S3):7C2 = C12:7D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):7C2 | 192,574 |
(C2xD4:S3):8C2 = D12:16D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):8C2 | 192,595 |
(C2xD4:S3):9C2 = D12:17D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):9C2 | 192,596 |
(C2xD4:S3):10C2 = C3:C8:22D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):10C2 | 192,597 |
(C2xD4:S3):11C2 = C4:D4:S3 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):11C2 | 192,598 |
(C2xD4:S3):12C2 = C42.64D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):12C2 | 192,617 |
(C2xD4:S3):13C2 = C12:2D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):13C2 | 192,631 |
(C2xD4:S3):14C2 = C12:D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):14C2 | 192,632 |
(C2xD4:S3):15C2 = C42.74D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):15C2 | 192,633 |
(C2xD4:S3):16C2 = Dic3:D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):16C2 | 192,709 |
(C2xD4:S3):17C2 = C24:5D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):17C2 | 192,710 |
(C2xD4:S3):18C2 = C24:11D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):18C2 | 192,713 |
(C2xD4:S3):19C2 = D12:D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):19C2 | 192,715 |
(C2xD4:S3):20C2 = D12:7D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):20C2 | 192,731 |
(C2xD4:S3):21C2 = C24:9D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):21C2 | 192,735 |
(C2xD4:S3):22C2 = M4(2).D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | 8+ | (C2xD4:S3):22C2 | 192,758 |
(C2xD4:S3):23C2 = (C2xC6):8D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):23C2 | 192,776 |
(C2xD4:S3):24C2 = (C3xD4):14D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):24C2 | 192,797 |
(C2xD4:S3):25C2 = C2xS3xD8 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):25C2 | 192,1313 |
(C2xD4:S3):26C2 = C2xD8:S3 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):26C2 | 192,1314 |
(C2xD4:S3):27C2 = C2xQ8:3D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):27C2 | 192,1318 |
(C2xD4:S3):28C2 = C2xQ8.7D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 96 | | (C2xD4:S3):28C2 | 192,1320 |
(C2xD4:S3):29C2 = D8:5D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | 8+ | (C2xD4:S3):29C2 | 192,1333 |
(C2xD4:S3):30C2 = C2xD12:6C22 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):30C2 | 192,1352 |
(C2xD4:S3):31C2 = C2xD4:D6 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | | (C2xD4:S3):31C2 | 192,1379 |
(C2xD4:S3):32C2 = D12.32C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:S3 | 48 | 8+ | (C2xD4:S3):32C2 | 192,1394 |
(C2xD4:S3):33C2 = C2xQ8.13D6 | φ: trivial image | 96 | | (C2xD4:S3):33C2 | 192,1380 |