Extensions 1→N→G→Q→1 with N=C2×D4⋊S3 and Q=C2

Direct product G=N×Q with N=C2×D4⋊S3 and Q=C2
dρLabelID
C22×D4⋊S396C2^2xD4:S3192,1351

Semidirect products G=N:Q with N=C2×D4⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊S3)⋊1C2 = D12.3D4φ: C2/C1C2 ⊆ Out C2×D4⋊S3488+(C2xD4:S3):1C2192,308
(C2×D4⋊S3)⋊2C2 = D4⋊D12φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):2C2192,332
(C2×D4⋊S3)⋊3C2 = D6⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):3C2192,334
(C2×D4⋊S3)⋊4C2 = D43D12φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):4C2192,340
(C2×D4⋊S3)⋊5C2 = C3⋊C8⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):5C2192,341
(C2×D4⋊S3)⋊6C2 = D123D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):6C2192,345
(C2×D4⋊S3)⋊7C2 = C127D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):7C2192,574
(C2×D4⋊S3)⋊8C2 = D1216D4φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):8C2192,595
(C2×D4⋊S3)⋊9C2 = D1217D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):9C2192,596
(C2×D4⋊S3)⋊10C2 = C3⋊C822D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):10C2192,597
(C2×D4⋊S3)⋊11C2 = C4⋊D4⋊S3φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):11C2192,598
(C2×D4⋊S3)⋊12C2 = C42.64D6φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):12C2192,617
(C2×D4⋊S3)⋊13C2 = C122D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):13C2192,631
(C2×D4⋊S3)⋊14C2 = C12⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):14C2192,632
(C2×D4⋊S3)⋊15C2 = C42.74D6φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):15C2192,633
(C2×D4⋊S3)⋊16C2 = Dic3⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):16C2192,709
(C2×D4⋊S3)⋊17C2 = C245D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):17C2192,710
(C2×D4⋊S3)⋊18C2 = C2411D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):18C2192,713
(C2×D4⋊S3)⋊19C2 = D12⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):19C2192,715
(C2×D4⋊S3)⋊20C2 = D127D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):20C2192,731
(C2×D4⋊S3)⋊21C2 = C249D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):21C2192,735
(C2×D4⋊S3)⋊22C2 = M4(2).D6φ: C2/C1C2 ⊆ Out C2×D4⋊S3488+(C2xD4:S3):22C2192,758
(C2×D4⋊S3)⋊23C2 = (C2×C6)⋊8D8φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):23C2192,776
(C2×D4⋊S3)⋊24C2 = (C3×D4)⋊14D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):24C2192,797
(C2×D4⋊S3)⋊25C2 = C2×S3×D8φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):25C2192,1313
(C2×D4⋊S3)⋊26C2 = C2×D8⋊S3φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):26C2192,1314
(C2×D4⋊S3)⋊27C2 = C2×Q83D6φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):27C2192,1318
(C2×D4⋊S3)⋊28C2 = C2×Q8.7D6φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3):28C2192,1320
(C2×D4⋊S3)⋊29C2 = D85D6φ: C2/C1C2 ⊆ Out C2×D4⋊S3488+(C2xD4:S3):29C2192,1333
(C2×D4⋊S3)⋊30C2 = C2×D126C22φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):30C2192,1352
(C2×D4⋊S3)⋊31C2 = C2×D4⋊D6φ: C2/C1C2 ⊆ Out C2×D4⋊S348(C2xD4:S3):31C2192,1379
(C2×D4⋊S3)⋊32C2 = D12.32C23φ: C2/C1C2 ⊆ Out C2×D4⋊S3488+(C2xD4:S3):32C2192,1394
(C2×D4⋊S3)⋊33C2 = C2×Q8.13D6φ: trivial image96(C2xD4:S3):33C2192,1380

Non-split extensions G=N.Q with N=C2×D4⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊S3).1C2 = Dic34D8φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).1C2192,315
(C2×D4⋊S3).2C2 = D4⋊S3⋊C4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).2C2192,344
(C2×D4⋊S3).3C2 = D12.D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).3C2192,346
(C2×D4⋊S3).4C2 = C42.48D6φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).4C2192,573
(C2×D4⋊S3).5C2 = D4.1D12φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).5C2192,575
(C2×D4⋊S3).6C2 = D12.23D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).6C2192,616
(C2×D4⋊S3).7C2 = C42.214D6φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).7C2192,618
(C2×D4⋊S3).8C2 = (C3×D4).D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).8C2192,724
(C2×D4⋊S3).9C2 = C24.43D4φ: C2/C1C2 ⊆ Out C2×D4⋊S396(C2xD4:S3).9C2192,727
(C2×D4⋊S3).10C2 = C4×D4⋊S3φ: trivial image96(C2xD4:S3).10C2192,572

׿
×
𝔽