Extensions 1→N→G→Q→1 with N=C2xD4:S3 and Q=C2

Direct product G=NxQ with N=C2xD4:S3 and Q=C2
dρLabelID
C22xD4:S396C2^2xD4:S3192,1351

Semidirect products G=N:Q with N=C2xD4:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4:S3):1C2 = D12.3D4φ: C2/C1C2 ⊆ Out C2xD4:S3488+(C2xD4:S3):1C2192,308
(C2xD4:S3):2C2 = D4:D12φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):2C2192,332
(C2xD4:S3):3C2 = D6:D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):3C2192,334
(C2xD4:S3):4C2 = D4:3D12φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):4C2192,340
(C2xD4:S3):5C2 = C3:C8:D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):5C2192,341
(C2xD4:S3):6C2 = D12:3D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):6C2192,345
(C2xD4:S3):7C2 = C12:7D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):7C2192,574
(C2xD4:S3):8C2 = D12:16D4φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):8C2192,595
(C2xD4:S3):9C2 = D12:17D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):9C2192,596
(C2xD4:S3):10C2 = C3:C8:22D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):10C2192,597
(C2xD4:S3):11C2 = C4:D4:S3φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):11C2192,598
(C2xD4:S3):12C2 = C42.64D6φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):12C2192,617
(C2xD4:S3):13C2 = C12:2D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):13C2192,631
(C2xD4:S3):14C2 = C12:D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):14C2192,632
(C2xD4:S3):15C2 = C42.74D6φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):15C2192,633
(C2xD4:S3):16C2 = Dic3:D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):16C2192,709
(C2xD4:S3):17C2 = C24:5D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):17C2192,710
(C2xD4:S3):18C2 = C24:11D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):18C2192,713
(C2xD4:S3):19C2 = D12:D4φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):19C2192,715
(C2xD4:S3):20C2 = D12:7D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):20C2192,731
(C2xD4:S3):21C2 = C24:9D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):21C2192,735
(C2xD4:S3):22C2 = M4(2).D6φ: C2/C1C2 ⊆ Out C2xD4:S3488+(C2xD4:S3):22C2192,758
(C2xD4:S3):23C2 = (C2xC6):8D8φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):23C2192,776
(C2xD4:S3):24C2 = (C3xD4):14D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):24C2192,797
(C2xD4:S3):25C2 = C2xS3xD8φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):25C2192,1313
(C2xD4:S3):26C2 = C2xD8:S3φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):26C2192,1314
(C2xD4:S3):27C2 = C2xQ8:3D6φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):27C2192,1318
(C2xD4:S3):28C2 = C2xQ8.7D6φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3):28C2192,1320
(C2xD4:S3):29C2 = D8:5D6φ: C2/C1C2 ⊆ Out C2xD4:S3488+(C2xD4:S3):29C2192,1333
(C2xD4:S3):30C2 = C2xD12:6C22φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):30C2192,1352
(C2xD4:S3):31C2 = C2xD4:D6φ: C2/C1C2 ⊆ Out C2xD4:S348(C2xD4:S3):31C2192,1379
(C2xD4:S3):32C2 = D12.32C23φ: C2/C1C2 ⊆ Out C2xD4:S3488+(C2xD4:S3):32C2192,1394
(C2xD4:S3):33C2 = C2xQ8.13D6φ: trivial image96(C2xD4:S3):33C2192,1380

Non-split extensions G=N.Q with N=C2xD4:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4:S3).1C2 = Dic3:4D8φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).1C2192,315
(C2xD4:S3).2C2 = D4:S3:C4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).2C2192,344
(C2xD4:S3).3C2 = D12.D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).3C2192,346
(C2xD4:S3).4C2 = C42.48D6φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).4C2192,573
(C2xD4:S3).5C2 = D4.1D12φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).5C2192,575
(C2xD4:S3).6C2 = D12.23D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).6C2192,616
(C2xD4:S3).7C2 = C42.214D6φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).7C2192,618
(C2xD4:S3).8C2 = (C3xD4).D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).8C2192,724
(C2xD4:S3).9C2 = C24.43D4φ: C2/C1C2 ⊆ Out C2xD4:S396(C2xD4:S3).9C2192,727
(C2xD4:S3).10C2 = C4xD4:S3φ: trivial image96(C2xD4:S3).10C2192,572

׿
x
:
Z
F
o
wr
Q
<