extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊S3)⋊1C2 = D12.3D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | 8+ | (C2xD4:S3):1C2 | 192,308 |
(C2×D4⋊S3)⋊2C2 = D4⋊D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):2C2 | 192,332 |
(C2×D4⋊S3)⋊3C2 = D6⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):3C2 | 192,334 |
(C2×D4⋊S3)⋊4C2 = D4⋊3D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):4C2 | 192,340 |
(C2×D4⋊S3)⋊5C2 = C3⋊C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):5C2 | 192,341 |
(C2×D4⋊S3)⋊6C2 = D12⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):6C2 | 192,345 |
(C2×D4⋊S3)⋊7C2 = C12⋊7D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):7C2 | 192,574 |
(C2×D4⋊S3)⋊8C2 = D12⋊16D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):8C2 | 192,595 |
(C2×D4⋊S3)⋊9C2 = D12⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):9C2 | 192,596 |
(C2×D4⋊S3)⋊10C2 = C3⋊C8⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):10C2 | 192,597 |
(C2×D4⋊S3)⋊11C2 = C4⋊D4⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):11C2 | 192,598 |
(C2×D4⋊S3)⋊12C2 = C42.64D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):12C2 | 192,617 |
(C2×D4⋊S3)⋊13C2 = C12⋊2D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):13C2 | 192,631 |
(C2×D4⋊S3)⋊14C2 = C12⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):14C2 | 192,632 |
(C2×D4⋊S3)⋊15C2 = C42.74D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):15C2 | 192,633 |
(C2×D4⋊S3)⋊16C2 = Dic3⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):16C2 | 192,709 |
(C2×D4⋊S3)⋊17C2 = C24⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):17C2 | 192,710 |
(C2×D4⋊S3)⋊18C2 = C24⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):18C2 | 192,713 |
(C2×D4⋊S3)⋊19C2 = D12⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):19C2 | 192,715 |
(C2×D4⋊S3)⋊20C2 = D12⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):20C2 | 192,731 |
(C2×D4⋊S3)⋊21C2 = C24⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):21C2 | 192,735 |
(C2×D4⋊S3)⋊22C2 = M4(2).D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | 8+ | (C2xD4:S3):22C2 | 192,758 |
(C2×D4⋊S3)⋊23C2 = (C2×C6)⋊8D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):23C2 | 192,776 |
(C2×D4⋊S3)⋊24C2 = (C3×D4)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):24C2 | 192,797 |
(C2×D4⋊S3)⋊25C2 = C2×S3×D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):25C2 | 192,1313 |
(C2×D4⋊S3)⋊26C2 = C2×D8⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):26C2 | 192,1314 |
(C2×D4⋊S3)⋊27C2 = C2×Q8⋊3D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):27C2 | 192,1318 |
(C2×D4⋊S3)⋊28C2 = C2×Q8.7D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3):28C2 | 192,1320 |
(C2×D4⋊S3)⋊29C2 = D8⋊5D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | 8+ | (C2xD4:S3):29C2 | 192,1333 |
(C2×D4⋊S3)⋊30C2 = C2×D12⋊6C22 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):30C2 | 192,1352 |
(C2×D4⋊S3)⋊31C2 = C2×D4⋊D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | | (C2xD4:S3):31C2 | 192,1379 |
(C2×D4⋊S3)⋊32C2 = D12.32C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 48 | 8+ | (C2xD4:S3):32C2 | 192,1394 |
(C2×D4⋊S3)⋊33C2 = C2×Q8.13D6 | φ: trivial image | 96 | | (C2xD4:S3):33C2 | 192,1380 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊S3).1C2 = Dic3⋊4D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).1C2 | 192,315 |
(C2×D4⋊S3).2C2 = D4⋊S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).2C2 | 192,344 |
(C2×D4⋊S3).3C2 = D12.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).3C2 | 192,346 |
(C2×D4⋊S3).4C2 = C42.48D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).4C2 | 192,573 |
(C2×D4⋊S3).5C2 = D4.1D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).5C2 | 192,575 |
(C2×D4⋊S3).6C2 = D12.23D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).6C2 | 192,616 |
(C2×D4⋊S3).7C2 = C42.214D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).7C2 | 192,618 |
(C2×D4⋊S3).8C2 = (C3×D4).D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).8C2 | 192,724 |
(C2×D4⋊S3).9C2 = C24.43D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊S3 | 96 | | (C2xD4:S3).9C2 | 192,727 |
(C2×D4⋊S3).10C2 = C4×D4⋊S3 | φ: trivial image | 96 | | (C2xD4:S3).10C2 | 192,572 |