Copied to
clipboard

G = D203D4order 320 = 26·5

3rd semidirect product of D20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D203D4, Dic52D8, (C2×D40)⋊5C2, C51(C4⋊D8), C2.11(D5×D8), C4.88(D4×D5), D4⋊C48D5, C20⋊D42C2, C10.25(C2×D8), (C2×C8).12D10, D208C43C2, D206C48C2, C4⋊C4.140D10, (C2×D4).31D10, C4.3(C4○D20), C20.112(C2×D4), C20.8Q87C2, C20.11(C4○D4), (C2×C40).12C22, (C2×Dic5).32D4, C22.183(D4×D5), C10.19(C4⋊D4), C2.13(D40⋊C2), C10.58(C8⋊C22), (C2×C20).226C23, (D4×C10).47C22, (C2×D20).58C22, C2.22(D10⋊D4), (C4×Dic5).19C22, (C2×D4⋊D5)⋊6C2, (C5×D4⋊C4)⋊8C2, (C2×C10).239(C2×D4), (C5×C4⋊C4).27C22, (C2×C52C8).24C22, (C2×C4).333(C22×D5), SmallGroup(320,413)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D203D4
C1C5C10C2×C10C2×C20C2×D20D208C4 — D203D4
C5C10C2×C20 — D203D4
C1C22C2×C4D4⋊C4

Generators and relations for D203D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=dad=a-1, cac-1=a9, cbc-1=a8b, dbd=a3b, dcd=c-1 >

Subgroups: 758 in 140 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C4⋊D8, D40, C2×C52C8, C4×Dic5, D10⋊C4, D4⋊D5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×D20, C2×C5⋊D4, D4×C10, D206C4, C20.8Q8, C5×D4⋊C4, D208C4, C2×D40, C2×D4⋊D5, C20⋊D4, D203D4
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C8⋊C22, C22×D5, C4⋊D8, C4○D20, D4×D5, D10⋊D4, D5×D8, D40⋊C2, D203D4

Smallest permutation representation of D203D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 102)(22 101)(23 120)(24 119)(25 118)(26 117)(27 116)(28 115)(29 114)(30 113)(31 112)(32 111)(33 110)(34 109)(35 108)(36 107)(37 106)(38 105)(39 104)(40 103)(61 89)(62 88)(63 87)(64 86)(65 85)(66 84)(67 83)(68 82)(69 81)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(121 142)(122 141)(123 160)(124 159)(125 158)(126 157)(127 156)(128 155)(129 154)(130 153)(131 152)(132 151)(133 150)(134 149)(135 148)(136 147)(137 146)(138 145)(139 144)(140 143)
(1 76 39 143)(2 65 40 152)(3 74 21 141)(4 63 22 150)(5 72 23 159)(6 61 24 148)(7 70 25 157)(8 79 26 146)(9 68 27 155)(10 77 28 144)(11 66 29 153)(12 75 30 142)(13 64 31 151)(14 73 32 160)(15 62 33 149)(16 71 34 158)(17 80 35 147)(18 69 36 156)(19 78 37 145)(20 67 38 154)(41 87 113 133)(42 96 114 122)(43 85 115 131)(44 94 116 140)(45 83 117 129)(46 92 118 138)(47 81 119 127)(48 90 120 136)(49 99 101 125)(50 88 102 134)(51 97 103 123)(52 86 104 132)(53 95 105 121)(54 84 106 130)(55 93 107 139)(56 82 108 128)(57 91 109 137)(58 100 110 126)(59 89 111 135)(60 98 112 124)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(38 40)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(61 158)(62 157)(63 156)(64 155)(65 154)(66 153)(67 152)(68 151)(69 150)(70 149)(71 148)(72 147)(73 146)(74 145)(75 144)(76 143)(77 142)(78 141)(79 160)(80 159)(81 130)(82 129)(83 128)(84 127)(85 126)(86 125)(87 124)(88 123)(89 122)(90 121)(91 140)(92 139)(93 138)(94 137)(95 136)(96 135)(97 134)(98 133)(99 132)(100 131)(101 104)(102 103)(105 120)(106 119)(107 118)(108 117)(109 116)(110 115)(111 114)(112 113)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,102)(22,101)(23,120)(24,119)(25,118)(26,117)(27,116)(28,115)(29,114)(30,113)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,104)(40,103)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(121,142)(122,141)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)(129,154)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143), (1,76,39,143)(2,65,40,152)(3,74,21,141)(4,63,22,150)(5,72,23,159)(6,61,24,148)(7,70,25,157)(8,79,26,146)(9,68,27,155)(10,77,28,144)(11,66,29,153)(12,75,30,142)(13,64,31,151)(14,73,32,160)(15,62,33,149)(16,71,34,158)(17,80,35,147)(18,69,36,156)(19,78,37,145)(20,67,38,154)(41,87,113,133)(42,96,114,122)(43,85,115,131)(44,94,116,140)(45,83,117,129)(46,92,118,138)(47,81,119,127)(48,90,120,136)(49,99,101,125)(50,88,102,134)(51,97,103,123)(52,86,104,132)(53,95,105,121)(54,84,106,130)(55,93,107,139)(56,82,108,128)(57,91,109,137)(58,100,110,126)(59,89,111,135)(60,98,112,124), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(38,40)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,158)(62,157)(63,156)(64,155)(65,154)(66,153)(67,152)(68,151)(69,150)(70,149)(71,148)(72,147)(73,146)(74,145)(75,144)(76,143)(77,142)(78,141)(79,160)(80,159)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,102)(22,101)(23,120)(24,119)(25,118)(26,117)(27,116)(28,115)(29,114)(30,113)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,104)(40,103)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(121,142)(122,141)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)(129,154)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143), (1,76,39,143)(2,65,40,152)(3,74,21,141)(4,63,22,150)(5,72,23,159)(6,61,24,148)(7,70,25,157)(8,79,26,146)(9,68,27,155)(10,77,28,144)(11,66,29,153)(12,75,30,142)(13,64,31,151)(14,73,32,160)(15,62,33,149)(16,71,34,158)(17,80,35,147)(18,69,36,156)(19,78,37,145)(20,67,38,154)(41,87,113,133)(42,96,114,122)(43,85,115,131)(44,94,116,140)(45,83,117,129)(46,92,118,138)(47,81,119,127)(48,90,120,136)(49,99,101,125)(50,88,102,134)(51,97,103,123)(52,86,104,132)(53,95,105,121)(54,84,106,130)(55,93,107,139)(56,82,108,128)(57,91,109,137)(58,100,110,126)(59,89,111,135)(60,98,112,124), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(38,40)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,158)(62,157)(63,156)(64,155)(65,154)(66,153)(67,152)(68,151)(69,150)(70,149)(71,148)(72,147)(73,146)(74,145)(75,144)(76,143)(77,142)(78,141)(79,160)(80,159)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,102),(22,101),(23,120),(24,119),(25,118),(26,117),(27,116),(28,115),(29,114),(30,113),(31,112),(32,111),(33,110),(34,109),(35,108),(36,107),(37,106),(38,105),(39,104),(40,103),(61,89),(62,88),(63,87),(64,86),(65,85),(66,84),(67,83),(68,82),(69,81),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(121,142),(122,141),(123,160),(124,159),(125,158),(126,157),(127,156),(128,155),(129,154),(130,153),(131,152),(132,151),(133,150),(134,149),(135,148),(136,147),(137,146),(138,145),(139,144),(140,143)], [(1,76,39,143),(2,65,40,152),(3,74,21,141),(4,63,22,150),(5,72,23,159),(6,61,24,148),(7,70,25,157),(8,79,26,146),(9,68,27,155),(10,77,28,144),(11,66,29,153),(12,75,30,142),(13,64,31,151),(14,73,32,160),(15,62,33,149),(16,71,34,158),(17,80,35,147),(18,69,36,156),(19,78,37,145),(20,67,38,154),(41,87,113,133),(42,96,114,122),(43,85,115,131),(44,94,116,140),(45,83,117,129),(46,92,118,138),(47,81,119,127),(48,90,120,136),(49,99,101,125),(50,88,102,134),(51,97,103,123),(52,86,104,132),(53,95,105,121),(54,84,106,130),(55,93,107,139),(56,82,108,128),(57,91,109,137),(58,100,110,126),(59,89,111,135),(60,98,112,124)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(38,40),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(61,158),(62,157),(63,156),(64,155),(65,154),(66,153),(67,152),(68,151),(69,150),(70,149),(71,148),(72,147),(73,146),(74,145),(75,144),(76,143),(77,142),(78,141),(79,160),(80,159),(81,130),(82,129),(83,128),(84,127),(85,126),(86,125),(87,124),(88,123),(89,122),(90,121),(91,140),(92,139),(93,138),(94,137),(95,136),(96,135),(97,134),(98,133),(99,132),(100,131),(101,104),(102,103),(105,120),(106,119),(107,118),(108,117),(109,116),(110,115),(111,114),(112,113)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222444444455888810···1010101010202020202020202040···40
size111182020402244101020224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D8C4○D4D10D10D10C4○D20C8⋊C22D4×D5D4×D5D5×D8D40⋊C2
kernelD203D4D206C4C20.8Q8C5×D4⋊C4D208C4C2×D40C2×D4⋊D5C20⋊D4D20C2×Dic5D4⋊C4Dic5C20C4⋊C4C2×C8C2×D4C4C10C4C22C2C2
# reps1111111122242222812244

Matrix representation of D203D4 in GL4(𝔽41) generated by

04000
13500
0019
001840
,
283900
21300
002426
001117
,
23600
211800
00400
00040
,
1000
64000
0010
001840
G:=sub<GL(4,GF(41))| [0,1,0,0,40,35,0,0,0,0,1,18,0,0,9,40],[28,2,0,0,39,13,0,0,0,0,24,11,0,0,26,17],[23,21,0,0,6,18,0,0,0,0,40,0,0,0,0,40],[1,6,0,0,0,40,0,0,0,0,1,18,0,0,0,40] >;

D203D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_3D_4
% in TeX

G:=Group("D20:3D4");
// GroupNames label

G:=SmallGroup(320,413);
// by ID

G=gap.SmallGroup(320,413);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,64,590,219,1684,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^8*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽