Copied to
clipboard

G = C3⋊D16order 96 = 25·3

The semidirect product of C3 and D16 acting via D16/D8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C32D16, D81S3, C6.8D8, C8.4D6, D243C2, C12.3D4, C24.2C22, C3⋊C161C2, (C3×D8)⋊1C2, C2.4(D4⋊S3), C4.1(C3⋊D4), SmallGroup(96,33)

Series: Derived Chief Lower central Upper central

C1C24 — C3⋊D16
C1C3C6C12C24D24 — C3⋊D16
C3C6C12C24 — C3⋊D16
C1C2C4C8D8

Generators and relations for C3⋊D16
 G = < a,b,c | a3=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >

8C2
24C2
4C22
12C22
8S3
8C6
2D4
6D4
4D6
4C2×C6
3C16
3D8
2D12
2C3×D4
3D16

Character table of C3⋊D16

 class 12A2B2C346A6B6C8A8B1216A16B16C16D24A24B
 size 1182422288224666644
ρ1111111111111111111    trivial
ρ211-1-1111-1-1111111111    linear of order 2
ρ3111-111111111-1-1-1-111    linear of order 2
ρ411-11111-1-1111-1-1-1-111    linear of order 2
ρ522-20-12-11122-10000-1-1    orthogonal lifted from D6
ρ62220-12-1-1-122-10000-1-1    orthogonal lifted from S3
ρ7220022200-2-220000-2-2    orthogonal lifted from D4
ρ82-20020-2002-20ζ1651631615169165163ζ16151692-2    orthogonal lifted from D16
ρ92-20020-200-220ζ1615169ζ1651631615169165163-22    orthogonal lifted from D16
ρ1022002-220000-2-22-2200    orthogonal lifted from D8
ρ1122002-220000-22-22-200    orthogonal lifted from D8
ρ122-20020-2002-20165163ζ1615169ζ16516316151692-2    orthogonal lifted from D16
ρ132-20020-200-2201615169165163ζ1615169ζ165163-22    orthogonal lifted from D16
ρ142200-12-1--3-3-2-2-1000011    complex lifted from C3⋊D4
ρ152200-12-1-3--3-2-2-1000011    complex lifted from C3⋊D4
ρ164400-2-4-200002000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ174-400-2020022-2200000-22    orthogonal faithful, Schur index 2
ρ184-400-20200-2222000002-2    orthogonal faithful, Schur index 2

Smallest permutation representation of C3⋊D16
On 48 points
Generators in S48
(1 34 22)(2 23 35)(3 36 24)(4 25 37)(5 38 26)(6 27 39)(7 40 28)(8 29 41)(9 42 30)(10 31 43)(11 44 32)(12 17 45)(13 46 18)(14 19 47)(15 48 20)(16 21 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 48)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)

G:=sub<Sym(48)| (1,34,22)(2,23,35)(3,36,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,17,45)(13,46,18)(14,19,47)(15,48,20)(16,21,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,48)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)>;

G:=Group( (1,34,22)(2,23,35)(3,36,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,17,45)(13,46,18)(14,19,47)(15,48,20)(16,21,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,48)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40) );

G=PermutationGroup([[(1,34,22),(2,23,35),(3,36,24),(4,25,37),(5,38,26),(6,27,39),(7,40,28),(8,29,41),(9,42,30),(10,31,43),(11,44,32),(12,17,45),(13,46,18),(14,19,47),(15,48,20),(16,21,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,48),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40)]])

C3⋊D16 is a maximal subgroup of
S3×D16  D8⋊D6  D48⋊C2  D6.2D8  D8.D6  Q16⋊D6  Q16.D6  C9⋊D16  C322D16  C3⋊D48  C327D16  C15⋊D16  C3⋊D80  C157D16
C3⋊D16 is a maximal quotient of
C6.6D16  C6.D16  C3⋊D32  D16.S3  C3⋊SD64  C3⋊Q64  D81Dic3  C9⋊D16  C322D16  C3⋊D48  C327D16  C15⋊D16  C3⋊D80  C157D16

Matrix representation of C3⋊D16 in GL4(𝔽7) generated by

5636
1333
4326
0002
,
3523
3115
5320
2031
,
2232
6535
1132
5204
G:=sub<GL(4,GF(7))| [5,1,4,0,6,3,3,0,3,3,2,0,6,3,6,2],[3,3,5,2,5,1,3,0,2,1,2,3,3,5,0,1],[2,6,1,5,2,5,1,2,3,3,3,0,2,5,2,4] >;

C3⋊D16 in GAP, Magma, Sage, TeX

C_3\rtimes D_{16}
% in TeX

G:=Group("C3:D16");
// GroupNames label

G:=SmallGroup(96,33);
// by ID

G=gap.SmallGroup(96,33);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,73,218,116,122,579,297,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^3=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D16 in TeX
Character table of C3⋊D16 in TeX

׿
×
𝔽