metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3⋊2D16, D8⋊1S3, C6.8D8, C8.4D6, D24⋊3C2, C12.3D4, C24.2C22, C3⋊C16⋊1C2, (C3×D8)⋊1C2, C2.4(D4⋊S3), C4.1(C3⋊D4), SmallGroup(96,33)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D16
G = < a,b,c | a3=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C3⋊D16
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 8A | 8B | 12 | 16A | 16B | 16C | 16D | 24A | 24B | |
size | 1 | 1 | 8 | 24 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | -1 | 2 | -1 | 1 | 1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | √2 | -√2 | orthogonal lifted from D16 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -√2 | √2 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | √2 | -√2 | orthogonal lifted from D16 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -√2 | √2 | orthogonal lifted from D16 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -√-3 | √-3 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | √-3 | -√-3 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ16 | 4 | 4 | 0 | 0 | -2 | -4 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ17 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful, Schur index 2 |
ρ18 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful, Schur index 2 |
(1 34 22)(2 23 35)(3 36 24)(4 25 37)(5 38 26)(6 27 39)(7 40 28)(8 29 41)(9 42 30)(10 31 43)(11 44 32)(12 17 45)(13 46 18)(14 19 47)(15 48 20)(16 21 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 48)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)
G:=sub<Sym(48)| (1,34,22)(2,23,35)(3,36,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,17,45)(13,46,18)(14,19,47)(15,48,20)(16,21,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,48)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)>;
G:=Group( (1,34,22)(2,23,35)(3,36,24)(4,25,37)(5,38,26)(6,27,39)(7,40,28)(8,29,41)(9,42,30)(10,31,43)(11,44,32)(12,17,45)(13,46,18)(14,19,47)(15,48,20)(16,21,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,48)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40) );
G=PermutationGroup([[(1,34,22),(2,23,35),(3,36,24),(4,25,37),(5,38,26),(6,27,39),(7,40,28),(8,29,41),(9,42,30),(10,31,43),(11,44,32),(12,17,45),(13,46,18),(14,19,47),(15,48,20),(16,21,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,48),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40)]])
C3⋊D16 is a maximal subgroup of
S3×D16 D8⋊D6 D48⋊C2 D6.2D8 D8.D6 Q16⋊D6 Q16.D6 C9⋊D16 C32⋊2D16 C3⋊D48 C32⋊7D16 C15⋊D16 C3⋊D80 C15⋊7D16
C3⋊D16 is a maximal quotient of
C6.6D16 C6.D16 C3⋊D32 D16.S3 C3⋊SD64 C3⋊Q64 D8⋊1Dic3 C9⋊D16 C32⋊2D16 C3⋊D48 C32⋊7D16 C15⋊D16 C3⋊D80 C15⋊7D16
Matrix representation of C3⋊D16 ►in GL4(𝔽7) generated by
5 | 6 | 3 | 6 |
1 | 3 | 3 | 3 |
4 | 3 | 2 | 6 |
0 | 0 | 0 | 2 |
3 | 5 | 2 | 3 |
3 | 1 | 1 | 5 |
5 | 3 | 2 | 0 |
2 | 0 | 3 | 1 |
2 | 2 | 3 | 2 |
6 | 5 | 3 | 5 |
1 | 1 | 3 | 2 |
5 | 2 | 0 | 4 |
G:=sub<GL(4,GF(7))| [5,1,4,0,6,3,3,0,3,3,2,0,6,3,6,2],[3,3,5,2,5,1,3,0,2,1,2,3,3,5,0,1],[2,6,1,5,2,5,1,2,3,3,3,0,2,5,2,4] >;
C3⋊D16 in GAP, Magma, Sage, TeX
C_3\rtimes D_{16}
% in TeX
G:=Group("C3:D16");
// GroupNames label
G:=SmallGroup(96,33);
// by ID
G=gap.SmallGroup(96,33);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,73,218,116,122,579,297,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^3=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊D16 in TeX
Character table of C3⋊D16 in TeX