metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8.S3, C8.5D6, C6.9D8, C3⋊2SD32, C12.4D4, Dic12⋊3C2, C24.3C22, C3⋊C16⋊2C2, (C3×D8).1C2, C2.5(D4⋊S3), C4.2(C3⋊D4), SmallGroup(96,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8.S3
G = < a,b,c,d | a8=b2=c3=1, d2=a4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a5b, dcd-1=c-1 >
Character table of D8.S3
class | 1 | 2A | 2B | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 12 | 16A | 16B | 16C | 16D | 24A | 24B | |
size | 1 | 1 | 8 | 2 | 2 | 24 | 2 | 8 | 8 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | -1 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | -2 | -1 | 2 | 0 | -1 | 1 | 1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ9 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ10 | 2 | 2 | 0 | -1 | 2 | 0 | -1 | -√-3 | √-3 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ11 | 2 | 2 | 0 | -1 | 2 | 0 | -1 | √-3 | -√-3 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ12 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | √2 | -√2 | complex lifted from SD32 |
ρ13 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | -√2 | √2 | complex lifted from SD32 |
ρ14 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | 0 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | -√2 | √2 | complex lifted from SD32 |
ρ15 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | 0 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | √2 | -√2 | complex lifted from SD32 |
ρ16 | 4 | 4 | 0 | -2 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ17 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | symplectic faithful, Schur index 2 |
ρ18 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8)(2 7)(3 6)(4 5)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)(25 32)(26 31)(27 30)(28 29)(33 34)(35 40)(36 39)(37 38)(42 48)(43 47)(44 46)
(1 34 25)(2 35 26)(3 36 27)(4 37 28)(5 38 29)(6 39 30)(7 40 31)(8 33 32)(9 22 48)(10 23 41)(11 24 42)(12 17 43)(13 18 44)(14 19 45)(15 20 46)(16 21 47)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 47 37 43)(34 46 38 42)(35 45 39 41)(36 44 40 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24)(25,32)(26,31)(27,30)(28,29)(33,34)(35,40)(36,39)(37,38)(42,48)(43,47)(44,46), (1,34,25)(2,35,26)(3,36,27)(4,37,28)(5,38,29)(6,39,30)(7,40,31)(8,33,32)(9,22,48)(10,23,41)(11,24,42)(12,17,43)(13,18,44)(14,19,45)(15,20,46)(16,21,47), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24)(25,32)(26,31)(27,30)(28,29)(33,34)(35,40)(36,39)(37,38)(42,48)(43,47)(44,46), (1,34,25)(2,35,26)(3,36,27)(4,37,28)(5,38,29)(6,39,30)(7,40,31)(8,33,32)(9,22,48)(10,23,41)(11,24,42)(12,17,43)(13,18,44)(14,19,45)(15,20,46)(16,21,47), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8),(2,7),(3,6),(4,5),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24),(25,32),(26,31),(27,30),(28,29),(33,34),(35,40),(36,39),(37,38),(42,48),(43,47),(44,46)], [(1,34,25),(2,35,26),(3,36,27),(4,37,28),(5,38,29),(6,39,30),(7,40,31),(8,33,32),(9,22,48),(10,23,41),(11,24,42),(12,17,43),(13,18,44),(14,19,45),(15,20,46),(16,21,47)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,47,37,43),(34,46,38,42),(35,45,39,41),(36,44,40,48)]])
D8.S3 is a maximal subgroup of
D8⋊D6 D16⋊3S3 S3×SD32 SD32⋊S3 D8.D6 Q16.D6 D8.9D6 D8.D9 D24.S3 C32⋊3SD32 C32⋊8SD32 C40.D6 D40.S3 D8.D15
D8.S3 is a maximal quotient of
C6.SD32 C6.Q32 D8⋊1Dic3 D8.D9 D24.S3 C32⋊3SD32 C32⋊8SD32 C40.D6 D40.S3 D8.D15
Matrix representation of D8.S3 ►in GL4(𝔽7) generated by
3 | 3 | 0 | 2 |
1 | 3 | 1 | 1 |
2 | 2 | 6 | 3 |
3 | 4 | 2 | 3 |
5 | 4 | 6 | 3 |
4 | 1 | 0 | 4 |
1 | 5 | 5 | 5 |
1 | 3 | 1 | 3 |
3 | 0 | 4 | 6 |
1 | 2 | 6 | 5 |
4 | 0 | 2 | 4 |
1 | 0 | 3 | 5 |
4 | 1 | 3 | 1 |
4 | 4 | 1 | 2 |
5 | 1 | 5 | 0 |
6 | 3 | 0 | 1 |
G:=sub<GL(4,GF(7))| [3,1,2,3,3,3,2,4,0,1,6,2,2,1,3,3],[5,4,1,1,4,1,5,3,6,0,5,1,3,4,5,3],[3,1,4,1,0,2,0,0,4,6,2,3,6,5,4,5],[4,4,5,6,1,4,1,3,3,1,5,0,1,2,0,1] >;
D8.S3 in GAP, Magma, Sage, TeX
D_8.S_3
% in TeX
G:=Group("D8.S3");
// GroupNames label
G:=SmallGroup(96,34);
// by ID
G=gap.SmallGroup(96,34);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,73,218,116,122,579,297,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^3=1,d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D8.S3 in TeX
Character table of D8.S3 in TeX