p-group, metacyclic, nilpotent (class 4), monomial
Aliases: SD32, D8.C2, C16⋊2C2, C4.2D4, C2.4D8, Q16⋊1C2, C8.3C22, 2-Sylow(GL(2,7)), also known as the quasi-dihedral group QD32, SmallGroup(32,19)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for SD32
G = < a,b | a16=b2=1, bab=a7 >
Character table of SD32
class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 8 | 2 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ8 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex faithful |
ρ9 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex faithful |
ρ10 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex faithful |
ρ11 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14)]])
G:=TransitiveGroup(16,55);
SD32 is a maximal subgroup of
C32⋊SD32
C8.D2p: C4○D16 C16⋊C22 Q32⋊C2 C48⋊C2 D8.S3 C8.6D6 C16⋊D5 D8.D5 ...
SD32 is a maximal quotient of
C16⋊4C4 C32⋊SD32
C8.D2p: C2.D16 C2.Q32 C48⋊C2 D8.S3 C8.6D6 C16⋊D5 D8.D5 C5⋊SD32 ...
Matrix representation of SD32 ►in GL2(𝔽7) generated by
0 | 1 |
1 | 6 |
1 | 6 |
0 | 6 |
G:=sub<GL(2,GF(7))| [0,1,1,6],[1,0,6,6] >;
SD32 in GAP, Magma, Sage, TeX
{\rm SD}_{32}
% in TeX
G:=Group("SD32");
// GroupNames label
G:=SmallGroup(32,19);
// by ID
G=gap.SmallGroup(32,19);
# by ID
G:=PCGroup([5,-2,2,-2,-2,-2,80,61,182,97,102,483,248,58]);
// Polycyclic
G:=Group<a,b|a^16=b^2=1,b*a*b=a^7>;
// generators/relations
Export
Subgroup lattice of SD32 in TeX
Character table of SD32 in TeX