Extensions 1→N→G→Q→1 with N=C4 and Q=D4

Direct product G=N×Q with N=C4 and Q=D4
dρLabelID
C4×D416C4xD432,25

Semidirect products G=N:Q with N=C4 and Q=D4
extensionφ:Q→Aut NdρLabelID
C41D4 = C41D4φ: D4/C4C2 ⊆ Aut C416C4:1D432,34
C42D4 = C4⋊D4φ: D4/C22C2 ⊆ Aut C416C4:2D432,28

Non-split extensions G=N.Q with N=C4 and Q=D4
extensionφ:Q→Aut NdρLabelID
C4.1D4 = D16φ: D4/C4C2 ⊆ Aut C4162+C4.1D432,18
C4.2D4 = SD32φ: D4/C4C2 ⊆ Aut C4162C4.2D432,19
C4.3D4 = Q32φ: D4/C4C2 ⊆ Aut C4322-C4.3D432,20
C4.4D4 = C4.4D4φ: D4/C4C2 ⊆ Aut C416C4.4D432,31
C4.5D4 = C4⋊Q8φ: D4/C4C2 ⊆ Aut C432C4.5D432,35
C4.6D4 = C2×D8φ: D4/C4C2 ⊆ Aut C416C4.6D432,39
C4.7D4 = C2×SD16φ: D4/C4C2 ⊆ Aut C416C4.7D432,40
C4.8D4 = C2×Q16φ: D4/C4C2 ⊆ Aut C432C4.8D432,41
C4.9D4 = C4.D4φ: D4/C22C2 ⊆ Aut C484+C4.9D432,7
C4.10D4 = C4.10D4φ: D4/C22C2 ⊆ Aut C4164-C4.10D432,8
C4.11D4 = D4⋊C4φ: D4/C22C2 ⊆ Aut C416C4.11D432,9
C4.12D4 = Q8⋊C4φ: D4/C22C2 ⊆ Aut C432C4.12D432,10
C4.13D4 = C22⋊Q8φ: D4/C22C2 ⊆ Aut C416C4.13D432,29
C4.14D4 = C8⋊C22φ: D4/C22C2 ⊆ Aut C484+C4.14D432,43
C4.15D4 = C8.C22φ: D4/C22C2 ⊆ Aut C4164-C4.15D432,44
C4.16D4 = C22⋊C8central extension (φ=1)16C4.16D432,5
C4.17D4 = C4≀C2central extension (φ=1)82C4.17D432,11
C4.18D4 = C4⋊C8central extension (φ=1)32C4.18D432,12
C4.19D4 = C8.C4central extension (φ=1)162C4.19D432,15
C4.20D4 = C4○D8central extension (φ=1)162C4.20D432,42

׿
×
𝔽