p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16⋊1C4, C8.15D4, C2.1Q32, C4.2SD16, C2.2SD32, C22.9D8, C8.8(C2×C4), (C2×C16).1C2, (C2×C4).61D4, C2.D8.1C2, (C2×Q16).1C2, C4.2(C22⋊C4), (C2×C8).70C22, C2.7(D4⋊C4), SmallGroup(64,39)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2.Q32
G = < a,b,c | a2=b16=1, c2=b8, ab=ba, ac=ca, cbc-1=ab-1 >
Character table of C2.Q32
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | i | -1 | -i | 1 | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -1 | i | 1 | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | -i | 1 | i | -1 | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | i | 1 | -i | -1 | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | symplectic lifted from Q32, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
(1 63)(2 64)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 18 9 26)(2 34 10 42)(3 32 11 24)(4 48 12 40)(5 30 13 22)(6 46 14 38)(7 28 15 20)(8 44 16 36)(17 56 25 64)(19 54 27 62)(21 52 29 60)(23 50 31 58)(33 57 41 49)(35 55 43 63)(37 53 45 61)(39 51 47 59)
G:=sub<Sym(64)| (1,63)(2,64)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,18,9,26)(2,34,10,42)(3,32,11,24)(4,48,12,40)(5,30,13,22)(6,46,14,38)(7,28,15,20)(8,44,16,36)(17,56,25,64)(19,54,27,62)(21,52,29,60)(23,50,31,58)(33,57,41,49)(35,55,43,63)(37,53,45,61)(39,51,47,59)>;
G:=Group( (1,63)(2,64)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,18,9,26)(2,34,10,42)(3,32,11,24)(4,48,12,40)(5,30,13,22)(6,46,14,38)(7,28,15,20)(8,44,16,36)(17,56,25,64)(19,54,27,62)(21,52,29,60)(23,50,31,58)(33,57,41,49)(35,55,43,63)(37,53,45,61)(39,51,47,59) );
G=PermutationGroup([[(1,63),(2,64),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,18,9,26),(2,34,10,42),(3,32,11,24),(4,48,12,40),(5,30,13,22),(6,46,14,38),(7,28,15,20),(8,44,16,36),(17,56,25,64),(19,54,27,62),(21,52,29,60),(23,50,31,58),(33,57,41,49),(35,55,43,63),(37,53,45,61),(39,51,47,59)]])
C2.Q32 is a maximal subgroup of
C23.24D8 C23.39D8 C23.41D8 C4×SD32 C4×Q32 SD32⋊3C4 Q32⋊4C4 Q16⋊7D4 D8⋊8D4 Q16.8D4 D8.10D4 D8.4D4 Q16.4D4 D8.5D4 Q16.5D4 C16.19D4 C16⋊8D4 C16.D4 C16⋊2D4 Q16⋊Q8 Q16.Q8 C23.50D8 C23.51D8 C23.20D8 C8.22SD16 C8.12SD16 C8.14SD16 D5.Q32
C2p.Q32: C4.Q32 C4.SD32 C6.Q32 C2.Dic24 C6.5Q32 C10.Q32 C40.78D4 C40.15D4 ...
C2.Q32 is a maximal quotient of
C23.32D8 C8.7C42 D5.Q32
C2p.Q32: Q16⋊1C8 C8.27D8 C4.6Q32 C6.Q32 C2.Dic24 C6.5Q32 C10.Q32 C40.78D4 ...
Matrix representation of C2.Q32 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
13 | 0 | 0 |
0 | 14 | 0 |
0 | 0 | 11 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 16 | 0 |
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,1],[13,0,0,0,14,0,0,0,11],[1,0,0,0,0,16,0,1,0] >;
C2.Q32 in GAP, Magma, Sage, TeX
C_2.Q_{32}
% in TeX
G:=Group("C2.Q32");
// GroupNames label
G:=SmallGroup(64,39);
// by ID
G=gap.SmallGroup(64,39);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,199,362,188,230,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^16=1,c^2=b^8,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C2.Q32 in TeX
Character table of C2.Q32 in TeX