p-group, metacyclic, nilpotent (class 4), monomial
Aliases: C16⋊4C4, C8.3Q8, C4.2Q16, C2.3SD32, C22.11D8, C4.8(C4⋊C4), (C2×C16).6C2, C8.15(C2×C4), (C2×C4).64D4, C2.D8.3C2, C2.4(C2.D8), (C2×C8).72C22, SmallGroup(64,48)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊4C4
G = < a,b | a16=b4=1, bab-1=a7 >
Character table of C16⋊4C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 45 32 58)(2 36 17 49)(3 43 18 56)(4 34 19 63)(5 41 20 54)(6 48 21 61)(7 39 22 52)(8 46 23 59)(9 37 24 50)(10 44 25 57)(11 35 26 64)(12 42 27 55)(13 33 28 62)(14 40 29 53)(15 47 30 60)(16 38 31 51)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,45,32,58)(2,36,17,49)(3,43,18,56)(4,34,19,63)(5,41,20,54)(6,48,21,61)(7,39,22,52)(8,46,23,59)(9,37,24,50)(10,44,25,57)(11,35,26,64)(12,42,27,55)(13,33,28,62)(14,40,29,53)(15,47,30,60)(16,38,31,51)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,45,32,58)(2,36,17,49)(3,43,18,56)(4,34,19,63)(5,41,20,54)(6,48,21,61)(7,39,22,52)(8,46,23,59)(9,37,24,50)(10,44,25,57)(11,35,26,64)(12,42,27,55)(13,33,28,62)(14,40,29,53)(15,47,30,60)(16,38,31,51) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,45,32,58),(2,36,17,49),(3,43,18,56),(4,34,19,63),(5,41,20,54),(6,48,21,61),(7,39,22,52),(8,46,23,59),(9,37,24,50),(10,44,25,57),(11,35,26,64),(12,42,27,55),(13,33,28,62),(14,40,29,53),(15,47,30,60),(16,38,31,51)]])
C16⋊4C4 is a maximal subgroup of
D16⋊3C4 C23.25D8 M5(2)⋊1C4 C4×SD32 Q32⋊4C4 D16⋊4C4 C16⋊8D4 C16⋊D4 C16.D4 Q16⋊Q8 D8⋊Q8 D8.Q8 Q16.Q8 C23.49D8 C23.19D8 C23.50D8 C23.20D8 C16⋊3Q8 C16⋊Q8
C16p⋊C4: C8.Q16 C48⋊6C4 C80⋊14C4 C80⋊3C4 C112⋊6C4 ...
C8p.Q8: C16.5Q8 C6.SD32 C10.SD32 C8.5Dic14 ...
C16⋊4C4 is a maximal quotient of
C8.7C42
C16p⋊C4: C8.Q16 C48⋊6C4 C80⋊14C4 C80⋊3C4 C112⋊6C4 ...
C2p.SD32: C16⋊4C8 C6.SD32 C10.SD32 C8.5Dic14 ...
Matrix representation of C16⋊4C4 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 8 | 15 |
0 | 1 | 6 |
4 | 0 | 0 |
0 | 13 | 8 |
0 | 0 | 4 |
G:=sub<GL(3,GF(17))| [1,0,0,0,8,1,0,15,6],[4,0,0,0,13,0,0,8,4] >;
C16⋊4C4 in GAP, Magma, Sage, TeX
C_{16}\rtimes_4C_4
% in TeX
G:=Group("C16:4C4");
// GroupNames label
G:=SmallGroup(64,48);
// by ID
G=gap.SmallGroup(64,48);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,319,362,230,1444,88]);
// Polycyclic
G:=Group<a,b|a^16=b^4=1,b*a*b^-1=a^7>;
// generators/relations
Export
Subgroup lattice of C16⋊4C4 in TeX
Character table of C16⋊4C4 in TeX