Extensions 1→N→G→Q→1 with N=C2×C4 and Q=S3

Direct product G=N×Q with N=C2×C4 and Q=S3
dρLabelID
S3×C2×C424S3xC2xC448,35

Semidirect products G=N:Q with N=C2×C4 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1S3 = D6⋊C4φ: S3/C3C2 ⊆ Aut C2×C424(C2xC4):1S348,14
(C2×C4)⋊2S3 = C2×D12φ: S3/C3C2 ⊆ Aut C2×C424(C2xC4):2S348,36
(C2×C4)⋊3S3 = C4○D12φ: S3/C3C2 ⊆ Aut C2×C4242(C2xC4):3S348,37

Non-split extensions G=N.Q with N=C2×C4 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1S3 = Dic3⋊C4φ: S3/C3C2 ⊆ Aut C2×C448(C2xC4).1S348,12
(C2×C4).2S3 = C4.Dic3φ: S3/C3C2 ⊆ Aut C2×C4242(C2xC4).2S348,10
(C2×C4).3S3 = C4⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C448(C2xC4).3S348,13
(C2×C4).4S3 = C2×Dic6φ: S3/C3C2 ⊆ Aut C2×C448(C2xC4).4S348,34
(C2×C4).5S3 = C2×C3⋊C8central extension (φ=1)48(C2xC4).5S348,9
(C2×C4).6S3 = C4×Dic3central extension (φ=1)48(C2xC4).6S348,11

׿
×
𝔽