d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C2×C4 | 24 | S3xC2xC4 | 48,35 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4)⋊1S3 = D6⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 24 | (C2xC4):1S3 | 48,14 | |
(C2×C4)⋊2S3 = C2×D12 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 24 | (C2xC4):2S3 | 48,36 | |
(C2×C4)⋊3S3 = C4○D12 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 24 | 2 | (C2xC4):3S3 | 48,37 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4).1S3 = Dic3⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).1S3 | 48,12 | |
(C2×C4).2S3 = C4.Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 24 | 2 | (C2xC4).2S3 | 48,10 |
(C2×C4).3S3 = C4⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).3S3 | 48,13 | |
(C2×C4).4S3 = C2×Dic6 | φ: S3/C3 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).4S3 | 48,34 | |
(C2×C4).5S3 = C2×C3⋊C8 | central extension (φ=1) | 48 | (C2xC4).5S3 | 48,9 | |
(C2×C4).6S3 = C4×Dic3 | central extension (φ=1) | 48 | (C2xC4).6S3 | 48,11 |