Extensions 1→N→G→Q→1 with N=C22 and Q=D6

Direct product G=N×Q with N=C22 and Q=D6

Semidirect products G=N:Q with N=C22 and Q=D6
extensionφ:Q→Aut NdρLabelID
C22⋊D6 = C2×S4φ: D6/C2S3 ⊆ Aut C2263+C2^2:D648,48
C222D6 = S3×D4φ: D6/S3C2 ⊆ Aut C22124+C2^2:2D648,38
C223D6 = C2×C3⋊D4φ: D6/C6C2 ⊆ Aut C2224C2^2:3D648,43

Non-split extensions G=N.Q with N=C22 and Q=D6
extensionφ:Q→Aut NdρLabelID
C22.1D6 = D42S3φ: D6/S3C2 ⊆ Aut C22244-C2^2.1D648,39
C22.2D6 = C4○D12φ: D6/C6C2 ⊆ Aut C22242C2^2.2D648,37
C22.3D6 = C4×Dic3central extension (φ=1)48C2^2.3D648,11
C22.4D6 = Dic3⋊C4central extension (φ=1)48C2^2.4D648,12
C22.5D6 = C4⋊Dic3central extension (φ=1)48C2^2.5D648,13
C22.6D6 = D6⋊C4central extension (φ=1)24C2^2.6D648,14
C22.7D6 = C6.D4central extension (φ=1)24C2^2.7D648,19
C22.8D6 = C2×Dic6central extension (φ=1)48C2^2.8D648,34
C22.9D6 = S3×C2×C4central extension (φ=1)24C2^2.9D648,35
C22.10D6 = C2×D12central extension (φ=1)24C2^2.10D648,36
C22.11D6 = C22×Dic3central extension (φ=1)48C2^2.11D648,42