Copied to
clipboard

G = (C2×C4).D8order 128 = 27

4th non-split extension by C2×C4 of D8 acting via D8/C2=D4

p-group, metabelian, nilpotent (class 4), monomial

Aliases: (C2×C4).4D8, (C2×C4).4SD16, C22.16C4≀C2, (C22×C4).32D4, C2.C42.4C4, C22.C42.7C2, C22.57(C23⋊C4), C2.4(C42.3C4), C2.5(C23.D4), C22.20(D4⋊C4), C23.157(C22⋊C4), C2.11(C22.SD16), C23.81C23.1C2, C22.M4(2).4C2, (C2×C4⋊C4).8C4, (C2×C4⋊C4).6C22, (C22×C4).4(C2×C4), SmallGroup(128,78)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C4).D8
C1C2C22C23C22×C4C2×C4⋊C4C23.81C23 — (C2×C4).D8
C1C2C23C22×C4 — (C2×C4).D8
C1C22C23C2×C4⋊C4 — (C2×C4).D8
C1C22C23C2×C4⋊C4 — (C2×C4).D8

Generators and relations for (C2×C4).D8
 G = < a,b,c,d | a2=b4=c8=1, d2=b, ab=ba, cac-1=dad-1=ab2, cbc-1=ab-1, bd=db, dcd-1=b-1c-1 >

Subgroups: 156 in 62 conjugacy classes, 20 normal (all characteristic)
C1, C2 [×3], C2 [×2], C4 [×7], C22 [×3], C22 [×2], C8 [×3], C2×C4 [×2], C2×C4 [×13], C23, C4⋊C4 [×4], C2×C8 [×2], M4(2) [×3], C22×C4 [×3], C22×C4 [×2], C2.C42, C2.C42, C22⋊C8, C2×C4⋊C4 [×2], C2×C4⋊C4, C2×M4(2), C22.M4(2), C22.C42, C23.81C23, (C2×C4).D8
Quotients: C1, C2 [×3], C4 [×2], C22, C2×C4, D4 [×2], C22⋊C4, D8, SD16, C23⋊C4, D4⋊C4, C4≀C2, C22.SD16, C23.D4, C42.3C4, (C2×C4).D8

Character table of (C2×C4).D8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H
 size 11112244448888888888888
ρ111111111111111111111111    trivial
ρ21111111111-1-11-1-1-111-111-1-1    linear of order 2
ρ3111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ41111111111-1-11-1-11-1-11-1-111    linear of order 2
ρ5111111-1-1-1-1-1111-1-iiii-i-i-ii    linear of order 4
ρ6111111-1-1-1-11-11-11iii-i-i-ii-i    linear of order 4
ρ7111111-1-1-1-1-1111-1i-i-i-iiii-i    linear of order 4
ρ8111111-1-1-1-11-11-11-i-i-iiii-ii    linear of order 4
ρ92222222-22-200-20000000000    orthogonal lifted from D4
ρ10222222-22-2200-20000000000    orthogonal lifted from D4
ρ112-22-22-220-2000000200-200-22    orthogonal lifted from D8
ρ122-22-22-220-2000000-2002002-2    orthogonal lifted from D8
ρ132-22-2-220-2i02i000000-1+i1-i0-1-i1+i00    complex lifted from C4≀C2
ρ142-22-2-2202i0-2i000000-1-i1+i0-1+i1-i00    complex lifted from C4≀C2
ρ152-22-22-2-202000000-200-200--2--2    complex lifted from SD16
ρ162-22-2-2202i0-2i0000001+i-1-i01-i-1+i00    complex lifted from C4≀C2
ρ172-22-2-220-2i02i0000001-i-1+i01+i-1-i00    complex lifted from C4≀C2
ρ182-22-22-2-202000000--200--200-2-2    complex lifted from SD16
ρ194444-4-400000000000000000    orthogonal lifted from C23⋊C4
ρ2044-4-4000000-2000200000000    symplectic lifted from C42.3C4, Schur index 2
ρ2144-4-40000002000-200000000    symplectic lifted from C42.3C4, Schur index 2
ρ224-4-4400000002i0-2i000000000    complex lifted from C23.D4
ρ234-4-440000000-2i02i000000000    complex lifted from C23.D4

Smallest permutation representation of (C2×C4).D8
On 32 points
Generators in S32
(2 19)(4 21)(6 23)(8 17)(9 31)(11 25)(13 27)(15 29)
(1 26 18 12)(2 13 19 27)(3 14 20 28)(4 29 21 15)(5 30 22 16)(6 9 23 31)(7 10 24 32)(8 25 17 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 8 26 25 18 17 12 11)(2 32 13 7 19 10 27 24)(3 23 14 31 20 6 28 9)(4 30 29 22 21 16 15 5)

G:=sub<Sym(32)| (2,19)(4,21)(6,23)(8,17)(9,31)(11,25)(13,27)(15,29), (1,26,18,12)(2,13,19,27)(3,14,20,28)(4,29,21,15)(5,30,22,16)(6,9,23,31)(7,10,24,32)(8,25,17,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8,26,25,18,17,12,11)(2,32,13,7,19,10,27,24)(3,23,14,31,20,6,28,9)(4,30,29,22,21,16,15,5)>;

G:=Group( (2,19)(4,21)(6,23)(8,17)(9,31)(11,25)(13,27)(15,29), (1,26,18,12)(2,13,19,27)(3,14,20,28)(4,29,21,15)(5,30,22,16)(6,9,23,31)(7,10,24,32)(8,25,17,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8,26,25,18,17,12,11)(2,32,13,7,19,10,27,24)(3,23,14,31,20,6,28,9)(4,30,29,22,21,16,15,5) );

G=PermutationGroup([(2,19),(4,21),(6,23),(8,17),(9,31),(11,25),(13,27),(15,29)], [(1,26,18,12),(2,13,19,27),(3,14,20,28),(4,29,21,15),(5,30,22,16),(6,9,23,31),(7,10,24,32),(8,25,17,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,8,26,25,18,17,12,11),(2,32,13,7,19,10,27,24),(3,23,14,31,20,6,28,9),(4,30,29,22,21,16,15,5)])

Matrix representation of (C2×C4).D8 in GL6(𝔽17)

1600000
0160000
001000
000100
0000160
0000016
,
100000
0160000
004000
0001300
000040
0000413
,
050000
600000
0000130
0000138
0001600
008800
,
100000
0130000
000010
0000115
004000
002200

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,4,0,0,0,0,0,13],[0,6,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,16,8,0,0,13,13,0,0,0,0,0,8,0,0],[1,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,2,0,0,1,1,0,0,0,0,0,15,0,0] >;

(C2×C4).D8 in GAP, Magma, Sage, TeX

(C_2\times C_4).D_8
% in TeX

G:=Group("(C2xC4).D8");
// GroupNames label

G:=SmallGroup(128,78);
// by ID

G=gap.SmallGroup(128,78);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,184,794,521,248,2804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a*b^-1,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations

Export

Character table of (C2×C4).D8 in TeX

׿
×
𝔽