extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D8 = C23.SD16 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).1D8 | 128,73 |
(C2×C4).2D8 = C23.2SD16 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).2D8 | 128,74 |
(C2×C4).3D8 = C2.C2≀C4 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).3D8 | 128,77 |
(C2×C4).4D8 = (C2×C4).D8 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).4D8 | 128,78 |
(C2×C4).5D8 = (C2×C4).5D8 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).5D8 | 128,342 |
(C2×C4).6D8 = D8⋊D4 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).6D8 | 128,922 |
(C2×C4).7D8 = D8.D4 | φ: D8/C2 → D4 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).7D8 | 128,923 |
(C2×C4).8D8 = C42.5Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).8D8 | 128,18 |
(C2×C4).9D8 = C42.27D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).9D8 | 128,24 |
(C2×C4).10D8 = C8.11C42 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).10D8 | 128,115 |
(C2×C4).11D8 = C8.13C42 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).11D8 | 128,117 |
(C2×C4).12D8 = D16⋊3C4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).12D8 | 128,150 |
(C2×C4).13D8 = M6(2)⋊C2 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4+ | (C2xC4).13D8 | 128,151 |
(C2×C4).14D8 = C16.18D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | 4- | (C2xC4).14D8 | 128,152 |
(C2×C4).15D8 = C8.Q16 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).15D8 | 128,158 |
(C2×C4).16D8 = C42.61D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).16D8 | 128,249 |
(C2×C4).17D8 = C42.413D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).17D8 | 128,277 |
(C2×C4).18D8 = C42.414D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).18D8 | 128,278 |
(C2×C4).19D8 = C42.78D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).19D8 | 128,279 |
(C2×C4).20D8 = (C2×D4)⋊Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).20D8 | 128,755 |
(C2×C4).21D8 = C4⋊C4⋊7D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).21D8 | 128,773 |
(C2×C4).22D8 = C4⋊C4⋊Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).22D8 | 128,789 |
(C2×C4).23D8 = (C2×C4).23D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).23D8 | 128,799 |
(C2×C4).24D8 = (C2×C4).24D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).24D8 | 128,803 |
(C2×C4).25D8 = (C2×C8).1Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).25D8 | 128,815 |
(C2×C4).26D8 = (C2×C4).26D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).26D8 | 128,818 |
(C2×C4).27D8 = (C2×C4).27D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27D8 | 128,825 |
(C2×C4).28D8 = (C2×C4).28D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).28D8 | 128,831 |
(C2×C4).29D8 = C2×D8⋊2C4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).29D8 | 128,876 |
(C2×C4).30D8 = D8⋊7D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).30D8 | 128,916 |
(C2×C4).31D8 = Q16⋊7D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).31D8 | 128,917 |
(C2×C4).32D8 = D8.9D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).32D8 | 128,919 |
(C2×C4).33D8 = Q16.8D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).33D8 | 128,920 |
(C2×C4).34D8 = D8.5D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).34D8 | 128,942 |
(C2×C4).35D8 = Q16.5D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).35D8 | 128,943 |
(C2×C4).36D8 = C16⋊D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).36D8 | 128,950 |
(C2×C4).37D8 = C16.D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).37D8 | 128,951 |
(C2×C4).38D8 = C16⋊2D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).38D8 | 128,952 |
(C2×C4).39D8 = D8.Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).39D8 | 128,960 |
(C2×C4).40D8 = Q16.Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).40D8 | 128,961 |
(C2×C4).41D8 = C22.D16 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).41D8 | 128,964 |
(C2×C4).42D8 = C23.49D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).42D8 | 128,965 |
(C2×C4).43D8 = C23.50D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).43D8 | 128,967 |
(C2×C4).44D8 = C23.51D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).44D8 | 128,968 |
(C2×C4).45D8 = C8.12SD16 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).45D8 | 128,975 |
(C2×C4).46D8 = C8.13SD16 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).46D8 | 128,976 |
(C2×C4).47D8 = C8.14SD16 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).47D8 | 128,977 |
(C2×C4).48D8 = C16⋊3D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).48D8 | 128,982 |
(C2×C4).49D8 = C8.7D8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).49D8 | 128,983 |
(C2×C4).50D8 = C16⋊Q8 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).50D8 | 128,987 |
(C2×C4).51D8 = C32⋊C22 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4+ | (C2xC4).51D8 | 128,995 |
(C2×C4).52D8 = Q64⋊C2 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | 4- | (C2xC4).52D8 | 128,996 |
(C2×C4).53D8 = C42.278D4 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).53D8 | 128,1958 |
(C2×C4).54D8 = C2×C16⋊C22 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).54D8 | 128,2144 |
(C2×C4).55D8 = C2×Q32⋊C2 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).55D8 | 128,2145 |
(C2×C4).56D8 = D16⋊C22 | φ: D8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).56D8 | 128,2146 |
(C2×C4).57D8 = C2.(C8⋊7D4) | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).57D8 | 128,666 |
(C2×C4).58D8 = C8⋊5(C4⋊C4) | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).58D8 | 128,674 |
(C2×C4).59D8 = C16⋊7D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).59D8 | 128,947 |
(C2×C4).60D8 = C16.19D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).60D8 | 128,948 |
(C2×C4).61D8 = C16⋊8D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).61D8 | 128,949 |
(C2×C4).62D8 = C8.22SD16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).62D8 | 128,974 |
(C2×C4).63D8 = C8.21D8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).63D8 | 128,981 |
(C2×C4).64D8 = C16.5Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).64D8 | 128,985 |
(C2×C4).65D8 = D16⋊2C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).65D8 | 128,147 |
(C2×C4).66D8 = Q32⋊2C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).66D8 | 128,148 |
(C2×C4).67D8 = D16.C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | 2 | (C2xC4).67D8 | 128,149 |
(C2×C4).68D8 = C32⋊3C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).68D8 | 128,155 |
(C2×C4).69D8 = C32⋊4C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).69D8 | 128,156 |
(C2×C4).70D8 = C32.C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | 2 | (C2xC4).70D8 | 128,157 |
(C2×C4).71D8 = C42.315D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).71D8 | 128,224 |
(C2×C4).72D8 = C8⋊7M4(2) | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).72D8 | 128,299 |
(C2×C4).73D8 = C42.55Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).73D8 | 128,566 |
(C2×C4).74D8 = C42.59Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).74D8 | 128,577 |
(C2×C4).75D8 = C42.432D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).75D8 | 128,689 |
(C2×C4).76D8 = C42.436D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).76D8 | 128,722 |
(C2×C4).77D8 = C2×C2.D16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).77D8 | 128,868 |
(C2×C4).78D8 = C2×C2.Q32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).78D8 | 128,869 |
(C2×C4).79D8 = C2×C16⋊3C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).79D8 | 128,888 |
(C2×C4).80D8 = C2×C16⋊4C4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).80D8 | 128,889 |
(C2×C4).81D8 = C4.4D16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).81D8 | 128,972 |
(C2×C4).82D8 = C4.SD32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).82D8 | 128,973 |
(C2×C4).83D8 = C4⋊D16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).83D8 | 128,978 |
(C2×C4).84D8 = C4⋊Q32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).84D8 | 128,979 |
(C2×C4).85D8 = C16⋊5D4 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).85D8 | 128,980 |
(C2×C4).86D8 = C16⋊2Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).86D8 | 128,984 |
(C2×C4).87D8 = C16⋊3Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).87D8 | 128,986 |
(C2×C4).88D8 = C2×D32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).88D8 | 128,991 |
(C2×C4).89D8 = C2×SD64 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).89D8 | 128,992 |
(C2×C4).90D8 = C2×Q64 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).90D8 | 128,993 |
(C2×C4).91D8 = C4○D32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | 2 | (C2xC4).91D8 | 128,994 |
(C2×C4).92D8 = C2×C4.4D8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).92D8 | 128,1860 |
(C2×C4).93D8 = C2×C8⋊2Q8 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).93D8 | 128,1891 |
(C2×C4).94D8 = C22×D16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).94D8 | 128,2140 |
(C2×C4).95D8 = C22×SD32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).95D8 | 128,2141 |
(C2×C4).96D8 = C22×Q32 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).96D8 | 128,2142 |
(C2×C4).97D8 = C2×C4○D16 | φ: D8/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).97D8 | 128,2143 |
(C2×C4).98D8 = (C2×C4).98D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).98D8 | 128,2 |
(C2×C4).99D8 = C4⋊C4⋊C8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).99D8 | 128,3 |
(C2×C4).100D8 = D8⋊C8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).100D8 | 128,65 |
(C2×C4).101D8 = Q16⋊C8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).101D8 | 128,66 |
(C2×C4).102D8 = C23.12SD16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).102D8 | 128,81 |
(C2×C4).103D8 = C23.13SD16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).103D8 | 128,82 |
(C2×C4).104D8 = C8.30D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).104D8 | 128,92 |
(C2×C4).105D8 = C8.16Q16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).105D8 | 128,95 |
(C2×C4).106D8 = C2.(C4×D8) | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).106D8 | 128,594 |
(C2×C4).107D8 = C2.D8⋊4C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).107D8 | 128,650 |
(C2×C4).108D8 = D4⋊C4⋊C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).108D8 | 128,657 |
(C2×C4).109D8 = SD32⋊3C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).109D8 | 128,907 |
(C2×C4).110D8 = Q32⋊4C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).110D8 | 128,908 |
(C2×C4).111D8 = D16⋊4C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).111D8 | 128,909 |
(C2×C4).112D8 = D8⋊8D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).112D8 | 128,918 |
(C2×C4).113D8 = D8.10D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).113D8 | 128,921 |
(C2×C4).114D8 = C23.19D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).114D8 | 128,966 |
(C2×C4).115D8 = C23.20D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).115D8 | 128,969 |
(C2×C4).116D8 = C42.8Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).116D8 | 128,28 |
(C2×C4).117D8 = C42.389D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).117D8 | 128,33 |
(C2×C4).118D8 = C42.10Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).118D8 | 128,35 |
(C2×C4).119D8 = C4.D16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).119D8 | 128,93 |
(C2×C4).120D8 = C8.27D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).120D8 | 128,94 |
(C2×C4).121D8 = C4.10D16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).121D8 | 128,96 |
(C2×C4).122D8 = C4.6Q32 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).122D8 | 128,97 |
(C2×C4).123D8 = C8.2C42 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).123D8 | 128,119 |
(C2×C4).124D8 = M5(2).C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).124D8 | 128,120 |
(C2×C4).125D8 = C8.4C42 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).125D8 | 128,121 |
(C2×C4).126D8 = C42.45D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).126D8 | 128,212 |
(C2×C4).127D8 = D4⋊M4(2) | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).127D8 | 128,218 |
(C2×C4).128D8 = C42.403D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).128D8 | 128,234 |
(C2×C4).129D8 = C2×C4.D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).129D8 | 128,270 |
(C2×C4).130D8 = C2×C4.10D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).130D8 | 128,271 |
(C2×C4).131D8 = C42.409D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).131D8 | 128,272 |
(C2×C4).132D8 = C42.91D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).132D8 | 128,303 |
(C2×C4).133D8 = C42.98D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).133D8 | 128,534 |
(C2×C4).134D8 = C42.29Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).134D8 | 128,679 |
(C2×C4).135D8 = C42.118D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).135D8 | 128,714 |
(C2×C4).136D8 = C42.122D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).136D8 | 128,720 |
(C2×C4).137D8 = C23.39D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).137D8 | 128,871 |
(C2×C4).138D8 = C23.40D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).138D8 | 128,872 |
(C2×C4).139D8 = C23.41D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).139D8 | 128,873 |
(C2×C4).140D8 = C23.20SD16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).140D8 | 128,875 |
(C2×C4).141D8 = C23.13D8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).141D8 | 128,877 |
(C2×C4).142D8 = C2×M5(2)⋊C2 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).142D8 | 128,878 |
(C2×C4).143D8 = C2×C8.17D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).143D8 | 128,879 |
(C2×C4).144D8 = C23.21SD16 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).144D8 | 128,880 |
(C2×C4).145D8 = M5(2)⋊1C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).145D8 | 128,891 |
(C2×C4).146D8 = M5(2).1C4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).146D8 | 128,893 |
(C2×C4).147D8 = D8⋊2D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).147D8 | 128,938 |
(C2×C4).148D8 = Q16⋊2D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).148D8 | 128,939 |
(C2×C4).149D8 = D8.4D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).149D8 | 128,940 |
(C2×C4).150D8 = Q16.4D4 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).150D8 | 128,941 |
(C2×C4).151D8 = D8⋊1Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).151D8 | 128,956 |
(C2×C4).152D8 = Q16⋊Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).152D8 | 128,957 |
(C2×C4).153D8 = D8⋊Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).153D8 | 128,958 |
(C2×C4).154D8 = C4.Q32 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).154D8 | 128,959 |
(C2×C4).155D8 = C2×D4⋊Q8 | φ: D8/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).155D8 | 128,1802 |
(C2×C4).156D8 = C42.385D4 | central extension (φ=1) | 128 | | (C2xC4).156D8 | 128,9 |
(C2×C4).157D8 = C42.46Q8 | central extension (φ=1) | 128 | | (C2xC4).157D8 | 128,11 |
(C2×C4).158D8 = C4.16D16 | central extension (φ=1) | 64 | | (C2xC4).158D8 | 128,63 |
(C2×C4).159D8 = Q16⋊1C8 | central extension (φ=1) | 128 | | (C2xC4).159D8 | 128,64 |
(C2×C4).160D8 = C16⋊3C8 | central extension (φ=1) | 128 | | (C2xC4).160D8 | 128,103 |
(C2×C4).161D8 = C16⋊4C8 | central extension (φ=1) | 128 | | (C2xC4).161D8 | 128,104 |
(C2×C4).162D8 = C8.8C42 | central extension (φ=1) | 64 | | (C2xC4).162D8 | 128,113 |
(C2×C4).163D8 = C8.9C42 | central extension (φ=1) | 64 | | (C2xC4).163D8 | 128,114 |
(C2×C4).164D8 = C2×D4⋊C8 | central extension (φ=1) | 64 | | (C2xC4).164D8 | 128,206 |
(C2×C4).165D8 = C2×C8⋊1C8 | central extension (φ=1) | 128 | | (C2xC4).165D8 | 128,295 |
(C2×C4).166D8 = C4×D4⋊C4 | central extension (φ=1) | 64 | | (C2xC4).166D8 | 128,492 |
(C2×C4).167D8 = C4×C2.D8 | central extension (φ=1) | 128 | | (C2xC4).167D8 | 128,507 |
(C2×C4).168D8 = C23.24D8 | central extension (φ=1) | 64 | | (C2xC4).168D8 | 128,870 |
(C2×C4).169D8 = C2×D8.C4 | central extension (φ=1) | 64 | | (C2xC4).169D8 | 128,874 |
(C2×C4).170D8 = C23.25D8 | central extension (φ=1) | 64 | | (C2xC4).170D8 | 128,890 |
(C2×C4).171D8 = C2×C8.4Q8 | central extension (φ=1) | 64 | | (C2xC4).171D8 | 128,892 |
(C2×C4).172D8 = C4×D16 | central extension (φ=1) | 64 | | (C2xC4).172D8 | 128,904 |
(C2×C4).173D8 = C4×SD32 | central extension (φ=1) | 64 | | (C2xC4).173D8 | 128,905 |
(C2×C4).174D8 = C4×Q32 | central extension (φ=1) | 128 | | (C2xC4).174D8 | 128,906 |