extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1SD16 = C23.D8 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).1SD16 | 128,71 |
(C2×C4).2SD16 = C23.2D8 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).2SD16 | 128,72 |
(C2×C4).3SD16 = C2.C2≀C4 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).3SD16 | 128,77 |
(C2×C4).4SD16 = (C2×C4).D8 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).4SD16 | 128,78 |
(C2×C4).5SD16 = (C2×C4).Q16 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).5SD16 | 128,85 |
(C2×C4).6SD16 = C2.7C2≀C4 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).6SD16 | 128,86 |
(C2×C4).7SD16 = (C2×C4).SD16 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).7SD16 | 128,343 |
(C2×C4).8SD16 = C4⋊C4.19D4 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | | (C2xC4).8SD16 | 128,348 |
(C2×C4).9SD16 = M5(2).C22 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 16 | 8+ | (C2xC4).9SD16 | 128,970 |
(C2×C4).10SD16 = C23.10SD16 | φ: SD16/C2 → D4 ⊆ Aut C2×C4 | 32 | 8- | (C2xC4).10SD16 | 128,971 |
(C2×C4).11SD16 = C42.5Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).11SD16 | 128,18 |
(C2×C4).12SD16 = C42.27D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).12SD16 | 128,24 |
(C2×C4).13SD16 = C22.SD32 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).13SD16 | 128,79 |
(C2×C4).14SD16 = C23.32D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).14SD16 | 128,80 |
(C2×C4).15SD16 = C8.30D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).15SD16 | 128,92 |
(C2×C4).16SD16 = C4.D16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).16SD16 | 128,93 |
(C2×C4).17SD16 = C8.27D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).17SD16 | 128,94 |
(C2×C4).18SD16 = C8.16Q16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).18SD16 | 128,95 |
(C2×C4).19SD16 = C4.10D16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).19SD16 | 128,96 |
(C2×C4).20SD16 = C4.6Q32 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).20SD16 | 128,97 |
(C2×C4).21SD16 = C8.C42 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).21SD16 | 128,118 |
(C2×C4).22SD16 = C8.2C42 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).22SD16 | 128,119 |
(C2×C4).23SD16 = M5(2).C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).23SD16 | 128,120 |
(C2×C4).24SD16 = C42.61D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).24SD16 | 128,249 |
(C2×C4).25SD16 = C42.62D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).25SD16 | 128,250 |
(C2×C4).26SD16 = C42.413D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).26SD16 | 128,277 |
(C2×C4).27SD16 = C42.414D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27SD16 | 128,278 |
(C2×C4).28SD16 = C42.78D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).28SD16 | 128,279 |
(C2×C4).29SD16 = C42.415D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).29SD16 | 128,280 |
(C2×C4).30SD16 = C42.416D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).30SD16 | 128,281 |
(C2×C4).31SD16 = C42.79D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).31SD16 | 128,282 |
(C2×C4).32SD16 = (C2×D4)⋊Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).32SD16 | 128,755 |
(C2×C4).33SD16 = (C2×Q8)⋊Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).33SD16 | 128,756 |
(C2×C4).34SD16 = C4⋊C4⋊7D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).34SD16 | 128,773 |
(C2×C4).35SD16 = C4⋊C4.95D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).35SD16 | 128,775 |
(C2×C4).36SD16 = (C2×C8)⋊Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).36SD16 | 128,790 |
(C2×C4).37SD16 = C4⋊C4.106D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).37SD16 | 128,797 |
(C2×C4).38SD16 = (C2×Q8).8Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).38SD16 | 128,798 |
(C2×C4).39SD16 = (C2×C4).24D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).39SD16 | 128,803 |
(C2×C4).40SD16 = (C2×C4).19Q16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).40SD16 | 128,804 |
(C2×C4).41SD16 = C2.(C8⋊3Q8) | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).41SD16 | 128,816 |
(C2×C4).42SD16 = C4.(C4⋊Q8) | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).42SD16 | 128,820 |
(C2×C4).43SD16 = (C2×C8).169D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).43SD16 | 128,826 |
(C2×C4).44SD16 = (C2×C8).170D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).44SD16 | 128,828 |
(C2×C4).45SD16 = (C2×C4).28D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).45SD16 | 128,831 |
(C2×C4).46SD16 = (C2×C4).23Q16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).46SD16 | 128,832 |
(C2×C4).47SD16 = C23.39D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).47SD16 | 128,871 |
(C2×C4).48SD16 = C23.40D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).48SD16 | 128,872 |
(C2×C4).49SD16 = C23.41D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).49SD16 | 128,873 |
(C2×C4).50SD16 = C23.20SD16 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).50SD16 | 128,875 |
(C2×C4).51SD16 = C2×D8⋊2C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).51SD16 | 128,876 |
(C2×C4).52SD16 = C23.13D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).52SD16 | 128,877 |
(C2×C4).53SD16 = C2×M5(2)⋊C2 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).53SD16 | 128,878 |
(C2×C4).54SD16 = C2×C8.17D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).54SD16 | 128,879 |
(C2×C4).55SD16 = C2×C8.Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).55SD16 | 128,886 |
(C2×C4).56SD16 = M5(2)⋊3C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).56SD16 | 128,887 |
(C2×C4).57SD16 = C42.279D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).57SD16 | 128,1959 |
(C2×C4).58SD16 = C42.281D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).58SD16 | 128,1961 |
(C2×C4).59SD16 = C4.16D16 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).59SD16 | 128,63 |
(C2×C4).60SD16 = Q16⋊1C8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).60SD16 | 128,64 |
(C2×C4).61SD16 = C2.(C8⋊8D4) | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).61SD16 | 128,665 |
(C2×C4).62SD16 = C2.(C8⋊7D4) | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).62SD16 | 128,666 |
(C2×C4).63SD16 = C8⋊7(C4⋊C4) | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).63SD16 | 128,673 |
(C2×C4).64SD16 = C8.7C42 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).64SD16 | 128,112 |
(C2×C4).65SD16 = C8.8C42 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).65SD16 | 128,113 |
(C2×C4).66SD16 = C8.9C42 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).66SD16 | 128,114 |
(C2×C4).67SD16 = C42.315D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).67SD16 | 128,224 |
(C2×C4).68SD16 = C42.316D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).68SD16 | 128,225 |
(C2×C4).69SD16 = C8⋊8M4(2) | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).69SD16 | 128,298 |
(C2×C4).70SD16 = C42.55Q8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).70SD16 | 128,566 |
(C2×C4).71SD16 = C42.58Q8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).71SD16 | 128,576 |
(C2×C4).72SD16 = C42.431D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).72SD16 | 128,688 |
(C2×C4).73SD16 = C42.432D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).73SD16 | 128,689 |
(C2×C4).74SD16 = C42.436D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).74SD16 | 128,722 |
(C2×C4).75SD16 = C2×C2.D16 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).75SD16 | 128,868 |
(C2×C4).76SD16 = C2×C2.Q32 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).76SD16 | 128,869 |
(C2×C4).77SD16 = C23.24D8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).77SD16 | 128,870 |
(C2×C4).78SD16 = C2×D8.C4 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).78SD16 | 128,874 |
(C2×C4).79SD16 = C2×C4.4D8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).79SD16 | 128,1860 |
(C2×C4).80SD16 = C2×C4.SD16 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).80SD16 | 128,1861 |
(C2×C4).81SD16 = C2×C8⋊3Q8 | φ: SD16/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).81SD16 | 128,1889 |
(C2×C4).82SD16 = C4⋊C4⋊C8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).82SD16 | 128,3 |
(C2×C4).83SD16 = (C2×Q8)⋊C8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).83SD16 | 128,4 |
(C2×C4).84SD16 = D8⋊C8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).84SD16 | 128,65 |
(C2×C4).85SD16 = Q16⋊C8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).85SD16 | 128,66 |
(C2×C4).86SD16 = C16⋊1C8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).86SD16 | 128,100 |
(C2×C4).87SD16 = D4⋊(C4⋊C4) | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).87SD16 | 128,596 |
(C2×C4).88SD16 = C4.Q8⋊10C4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).88SD16 | 128,652 |
(C2×C4).89SD16 = C4.68(C4×D4) | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).89SD16 | 128,659 |
(C2×C4).90SD16 = C42.8Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).90SD16 | 128,28 |
(C2×C4).91SD16 = C42.389D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).91SD16 | 128,33 |
(C2×C4).92SD16 = C42.10Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).92SD16 | 128,35 |
(C2×C4).93SD16 = C8.11C42 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).93SD16 | 128,115 |
(C2×C4).94SD16 = C23.9D8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).94SD16 | 128,116 |
(C2×C4).95SD16 = C8.13C42 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).95SD16 | 128,117 |
(C2×C4).96SD16 = C8.4C42 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).96SD16 | 128,121 |
(C2×C4).97SD16 = C42.46D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).97SD16 | 128,213 |
(C2×C4).98SD16 = D4⋊M4(2) | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).98SD16 | 128,218 |
(C2×C4).99SD16 = C42.404D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).99SD16 | 128,235 |
(C2×C4).100SD16 = C2×C4.10D8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).100SD16 | 128,271 |
(C2×C4).101SD16 = C2×C4.6Q16 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).101SD16 | 128,273 |
(C2×C4).102SD16 = C42.410D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).102SD16 | 128,274 |
(C2×C4).103SD16 = C42.98D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).103SD16 | 128,534 |
(C2×C4).104SD16 = C42.30Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).104SD16 | 128,680 |
(C2×C4).105SD16 = C42.117D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).105SD16 | 128,713 |
(C2×C4).106SD16 = C42.121D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).106SD16 | 128,719 |
(C2×C4).107SD16 = C23.21SD16 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).107SD16 | 128,880 |
(C2×C4).108SD16 = C2×D4⋊2Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).108SD16 | 128,1803 |
(C2×C4).109SD16 = (C2×C4).98D8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).109SD16 | 128,2 |
(C2×C4).110SD16 = Q8⋊C4⋊C4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).110SD16 | 128,597 |
(C2×C4).111SD16 = C4.Q8⋊9C4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).111SD16 | 128,651 |
(C2×C4).112SD16 = C4.67(C4×D4) | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).112SD16 | 128,658 |
(C2×C4).113SD16 = C42.45D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).113SD16 | 128,212 |
(C2×C4).114SD16 = Q8⋊M4(2) | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).114SD16 | 128,219 |
(C2×C4).115SD16 = C42.403D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).115SD16 | 128,234 |
(C2×C4).116SD16 = C2×C4.D8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).116SD16 | 128,270 |
(C2×C4).117SD16 = C42.409D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).117SD16 | 128,272 |
(C2×C4).118SD16 = C42.90D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).118SD16 | 128,302 |
(C2×C4).119SD16 = C42.99D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).119SD16 | 128,535 |
(C2×C4).120SD16 = C42.118D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).120SD16 | 128,714 |
(C2×C4).121SD16 = C42.122D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).121SD16 | 128,720 |
(C2×C4).122SD16 = C2×Q8⋊Q8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).122SD16 | 128,1805 |
(C2×C4).123SD16 = C42.385D4 | central extension (φ=1) | 128 | | (C2xC4).123SD16 | 128,9 |
(C2×C4).124SD16 = C42.46Q8 | central extension (φ=1) | 128 | | (C2xC4).124SD16 | 128,11 |
(C2×C4).125SD16 = C2×D4⋊C8 | central extension (φ=1) | 64 | | (C2xC4).125SD16 | 128,206 |
(C2×C4).126SD16 = C2×Q8⋊C8 | central extension (φ=1) | 128 | | (C2xC4).126SD16 | 128,207 |
(C2×C4).127SD16 = C2×C8⋊2C8 | central extension (φ=1) | 128 | | (C2xC4).127SD16 | 128,294 |
(C2×C4).128SD16 = C4×D4⋊C4 | central extension (φ=1) | 64 | | (C2xC4).128SD16 | 128,492 |
(C2×C4).129SD16 = C4×Q8⋊C4 | central extension (φ=1) | 128 | | (C2xC4).129SD16 | 128,493 |
(C2×C4).130SD16 = C4×C4.Q8 | central extension (φ=1) | 128 | | (C2xC4).130SD16 | 128,506 |