p-group, metabelian, nilpotent (class 4), monomial
Aliases: (C2×D4).135D4, C4⋊1D4.16C4, (C2×C42).25C4, C42.27(C2×C4), (C22×C4).99D4, C4.31(C23⋊C4), C4○(C42.3C4), C4○(C42.C4), C42.C4⋊8C2, C42.3C4⋊8C2, C4.4D4.14C4, C4⋊Q8.253C22, (C2×Q8).12C23, C23.25(C22⋊C4), C4.10D4.6C22, C4.4D4.123C22, C22.26C24.24C2, M4(2).8C22⋊16C2, (C2×C4).9(C2×D4), (C2×C4○D4).9C4, (C2×D4).40(C2×C4), C2.44(C2×C23⋊C4), (C2×Q8).39(C2×C4), (C22×C4).84(C2×C4), (C2×C4).101(C22×C4), (C2×C4○D4).77C22, C22.68(C2×C22⋊C4), (C2×C4).365(C22⋊C4), SmallGroup(128,864)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).135D4
G = < a,b,c,d,e | a2=b4=c2=1, d4=b2, e2=ab-1, dbd-1=ab=ba, ece-1=ac=ca, dad-1=eae-1=ab2, cbc=ebe-1=b-1, dcd-1=ab2c, ede-1=abd3 >
Subgroups: 292 in 125 conjugacy classes, 42 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4.D4, C4.10D4, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×M4(2), C2×C4○D4, C42.C4, C42.3C4, M4(2).8C22, C22.26C24, (C2×D4).135D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×C23⋊C4, (C2×D4).135D4
Character table of (C2×D4).135D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -i | i | i | -i | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | i | -i | -i | i | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | -2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 2 | 0 | -2i | -2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | -2 | 0 | 2i | 2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 2 | 0 | 2i | -2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | -2 | 0 | -2i | 2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5)(3 7)(10 14)(12 16)
(1 14 5 10)(2 11 6 15)(3 12 7 16)(4 9 8 13)
(1 10)(2 11)(3 16)(4 9)(5 14)(6 15)(7 12)(8 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 13 14 8 5 9 10 4)(2 7 15 16 6 3 11 12)
G:=sub<Sym(16)| (1,5)(3,7)(10,14)(12,16), (1,14,5,10)(2,11,6,15)(3,12,7,16)(4,9,8,13), (1,10)(2,11)(3,16)(4,9)(5,14)(6,15)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13,14,8,5,9,10,4)(2,7,15,16,6,3,11,12)>;
G:=Group( (1,5)(3,7)(10,14)(12,16), (1,14,5,10)(2,11,6,15)(3,12,7,16)(4,9,8,13), (1,10)(2,11)(3,16)(4,9)(5,14)(6,15)(7,12)(8,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13,14,8,5,9,10,4)(2,7,15,16,6,3,11,12) );
G=PermutationGroup([[(1,5),(3,7),(10,14),(12,16)], [(1,14,5,10),(2,11,6,15),(3,12,7,16),(4,9,8,13)], [(1,10),(2,11),(3,16),(4,9),(5,14),(6,15),(7,12),(8,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,13,14,8,5,9,10,4),(2,7,15,16,6,3,11,12)]])
G:=TransitiveGroup(16,300);
(1 5)(3 7)(10 14)(12 16)
(1 16 5 12)(2 13 6 9)(3 14 7 10)(4 11 8 15)
(3 7)(4 8)(9 13)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 4 16 15 5 8 12 11)(2 14 9 7 6 10 13 3)
G:=sub<Sym(16)| (1,5)(3,7)(10,14)(12,16), (1,16,5,12)(2,13,6,9)(3,14,7,10)(4,11,8,15), (3,7)(4,8)(9,13)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,16,15,5,8,12,11)(2,14,9,7,6,10,13,3)>;
G:=Group( (1,5)(3,7)(10,14)(12,16), (1,16,5,12)(2,13,6,9)(3,14,7,10)(4,11,8,15), (3,7)(4,8)(9,13)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,16,15,5,8,12,11)(2,14,9,7,6,10,13,3) );
G=PermutationGroup([[(1,5),(3,7),(10,14),(12,16)], [(1,16,5,12),(2,13,6,9),(3,14,7,10),(4,11,8,15)], [(3,7),(4,8),(9,13),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,4,16,15,5,8,12,11),(2,14,9,7,6,10,13,3)]])
G:=TransitiveGroup(16,327);
Matrix representation of (C2×D4).135D4 ►in GL4(𝔽5) generated by
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 0 | 3 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,GF(5))| [1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[0,0,2,0,0,0,0,2,2,0,0,0,0,2,0,0],[4,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4],[0,2,0,0,0,0,2,0,0,0,0,2,3,0,0,0],[0,0,0,1,2,0,0,0,0,4,0,0,0,0,3,0] >;
(C2×D4).135D4 in GAP, Magma, Sage, TeX
(C_2\times D_4)._{135}D_4
% in TeX
G:=Group("(C2xD4).135D4");
// GroupNames label
G:=SmallGroup(128,864);
// by ID
G=gap.SmallGroup(128,864);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,352,1123,1018,248,1971,375,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^4=b^2,e^2=a*b^-1,d*b*d^-1=a*b=b*a,e*c*e^-1=a*c=c*a,d*a*d^-1=e*a*e^-1=a*b^2,c*b*c=e*b*e^-1=b^-1,d*c*d^-1=a*b^2*c,e*d*e^-1=a*b*d^3>;
// generators/relations
Export