Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C2xC4

Direct product G=NxQ with N=C2xQ8 and Q=C2xC4
dρLabelID
Q8xC22xC4128Q8xC2^2xC4128,2155

Semidirect products G=N:Q with N=C2xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xQ8):1(C2xC4) = C2xC23.31D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8):1(C2xC4)128,231
(C2xQ8):2(C2xC4) = C24.150D4φ: C2xC4/C2C4 ⊆ Out C2xQ816(C2xQ8):2(C2xC4)128,236
(C2xQ8):3(C2xC4) = C2xC42:3C4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8):3(C2xC4)128,857
(C2xQ8):4(C2xC4) = C24.39D4φ: C2xC4/C2C4 ⊆ Out C2xQ8168+(C2xQ8):4(C2xC4)128,859
(C2xQ8):5(C2xC4) = C24.160D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):5(C2xC4)128,604
(C2xQ8):6(C2xC4) = (C2xSD16):14C4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):6(C2xC4)128,609
(C2xQ8):7(C2xC4) = C8.C22:C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8):7(C2xC4)128,614
(C2xQ8):8(C2xC4) = C24.23D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8):8(C2xC4)128,617
(C2xQ8):9(C2xC4) = (C2xC4)wrC2φ: C2xC4/C2C22 ⊆ Out C2xQ816(C2xQ8):9(C2xC4)128,628
(C2xQ8):10(C2xC4) = C42.5D4φ: C2xC4/C2C22 ⊆ Out C2xQ8168+(C2xQ8):10(C2xC4)128,636
(C2xQ8):11(C2xC4) = C42.426D4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8):11(C2xC4)128,638
(C2xQ8):12(C2xC4) = C42:D4φ: C2xC4/C2C22 ⊆ Out C2xQ8168+(C2xQ8):12(C2xC4)128,643
(C2xQ8):13(C2xC4) = C23.211C24φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):13(C2xC4)128,1061
(C2xQ8):14(C2xC4) = C24.205C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):14(C2xC4)128,1069
(C2xQ8):15(C2xC4) = C23.250C24φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):15(C2xC4)128,1100
(C2xQ8):16(C2xC4) = C24.221C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):16(C2xC4)128,1104
(C2xQ8):17(C2xC4) = C23.261C24φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):17(C2xC4)128,1111
(C2xQ8):18(C2xC4) = 2- 1+4:4C4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):18(C2xC4)128,1630
(C2xQ8):19(C2xC4) = 2- 1+4:5C4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8):19(C2xC4)128,1633
(C2xQ8):20(C2xC4) = C42.276C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8):20(C2xC4)128,1679
(C2xQ8):21(C2xC4) = C42.278C23φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8):21(C2xC4)128,1681
(C2xQ8):22(C2xC4) = C4xC22:Q8φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):22(C2xC4)128,1034
(C2xQ8):23(C2xC4) = C4xC4.4D4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):23(C2xC4)128,1035
(C2xQ8):24(C2xC4) = C42.160D4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):24(C2xC4)128,1058
(C2xQ8):25(C2xC4) = C24.558C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):25(C2xC4)128,1092
(C2xQ8):26(C2xC4) = C24.220C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):26(C2xC4)128,1099
(C2xQ8):27(C2xC4) = C2xC4xSD16φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):27(C2xC4)128,1669
(C2xQ8):28(C2xC4) = C2xSD16:C4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):28(C2xC4)128,1672
(C2xQ8):29(C2xC4) = C4xC8.C22φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):29(C2xC4)128,1677
(C2xQ8):30(C2xC4) = C4x2- 1+4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8):30(C2xC4)128,2162
(C2xQ8):31(C2xC4) = C2xC23.67C23φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8):31(C2xC4)128,1026
(C2xQ8):32(C2xC4) = C23.179C24φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):32(C2xC4)128,1029
(C2xQ8):33(C2xC4) = C24.542C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):33(C2xC4)128,1043
(C2xQ8):34(C2xC4) = C24.549C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):34(C2xC4)128,1071
(C2xQ8):35(C2xC4) = C2xC23.C23φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8):35(C2xC4)128,1614
(C2xQ8):36(C2xC4) = C23.C24φ: C2xC4/C22C2 ⊆ Out C2xQ8168+(C2xQ8):36(C2xC4)128,1615
(C2xQ8):37(C2xC4) = C22xQ8:C4φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8):37(C2xC4)128,1623
(C2xQ8):38(C2xC4) = C2xC23.38D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):38(C2xC4)128,1626
(C2xQ8):39(C2xC4) = C2xC23.36D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):39(C2xC4)128,1627
(C2xQ8):40(C2xC4) = C24.98D4φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8):40(C2xC4)128,1628
(C2xQ8):41(C2xC4) = C22xC4wrC2φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8):41(C2xC4)128,1631
(C2xQ8):42(C2xC4) = C2xC42:C22φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8):42(C2xC4)128,1632
(C2xQ8):43(C2xC4) = C2xC23.32C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8):43(C2xC4)128,2158
(C2xQ8):44(C2xC4) = C22.14C25φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8):44(C2xC4)128,2160
(C2xQ8):45(C2xC4) = C2xC4xC4oD4φ: trivial image64(C2xQ8):45(C2xC4)128,2156
(C2xQ8):46(C2xC4) = C2xC23.33C23φ: trivial image64(C2xQ8):46(C2xC4)128,2159

Non-split extensions G=N.Q with N=C2xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xQ8).1(C2xC4) = C42.3D4φ: C2xC4/C1C2xC4 ⊆ Out C2xQ8164(C2xQ8).1(C2xC4)128,136
(C2xQ8).2(C2xC4) = C42.4D4φ: C2xC4/C1C2xC4 ⊆ Out C2xQ8164-(C2xQ8).2(C2xC4)128,137
(C2xQ8).3(C2xC4) = C42.375D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).3(C2xC4)128,232
(C2xQ8).4(C2xC4) = C24.53D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).4(C2xC4)128,233
(C2xQ8).5(C2xC4) = C42.404D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).5(C2xC4)128,235
(C2xQ8).6(C2xC4) = C42.56D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).6(C2xC4)128,238
(C2xQ8).7(C2xC4) = C24.55D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).7(C2xC4)128,240
(C2xQ8).8(C2xC4) = C42.57D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).8(C2xC4)128,241
(C2xQ8).9(C2xC4) = C24.57D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).9(C2xC4)128,243
(C2xQ8).10(C2xC4) = C42.58D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).10(C2xC4)128,244
(C2xQ8).11(C2xC4) = C24.58D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).11(C2xC4)128,245
(C2xQ8).12(C2xC4) = C42.60D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).12(C2xC4)128,247
(C2xQ8).13(C2xC4) = C24.59D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).13(C2xC4)128,248
(C2xQ8).14(C2xC4) = C42.62D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).14(C2xC4)128,250
(C2xQ8).15(C2xC4) = C24.61D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).15(C2xC4)128,252
(C2xQ8).16(C2xC4) = C42.63D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).16(C2xC4)128,253
(C2xQ8).17(C2xC4) = C2xC42.C22φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).17(C2xC4)128,254
(C2xQ8).18(C2xC4) = C42.66D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).18(C2xC4)128,256
(C2xQ8).19(C2xC4) = C42.405D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).19(C2xC4)128,257
(C2xQ8).20(C2xC4) = C42.407D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).20(C2xC4)128,259
(C2xQ8).21(C2xC4) = C42.376D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).21(C2xC4)128,261
(C2xQ8).22(C2xC4) = C42.67D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).22(C2xC4)128,262
(C2xQ8).23(C2xC4) = C42.69D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).23(C2xC4)128,264
(C2xQ8).24(C2xC4) = C42.70D4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).24(C2xC4)128,265
(C2xQ8).25(C2xC4) = C42.72D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).25(C2xC4)128,267
(C2xQ8).26(C2xC4) = C42.73D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).26(C2xC4)128,268
(C2xQ8).27(C2xC4) = C2xC4.6Q16φ: C2xC4/C2C4 ⊆ Out C2xQ8128(C2xQ8).27(C2xC4)128,273
(C2xQ8).28(C2xC4) = C42.410D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).28(C2xC4)128,274
(C2xQ8).29(C2xC4) = C42.411D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).29(C2xC4)128,275
(C2xQ8).30(C2xC4) = C42.415D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).30(C2xC4)128,280
(C2xQ8).31(C2xC4) = C42.79D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).31(C2xC4)128,282
(C2xQ8).32(C2xC4) = C42.80D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).32(C2xC4)128,283
(C2xQ8).33(C2xC4) = C42.418D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).33(C2xC4)128,286
(C2xQ8).34(C2xC4) = C42.85D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).34(C2xC4)128,290
(C2xQ8).35(C2xC4) = C42.86D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).35(C2xC4)128,291
(C2xQ8).36(C2xC4) = C42.87D4φ: C2xC4/C2C4 ⊆ Out C2xQ864(C2xQ8).36(C2xC4)128,292
(C2xQ8).37(C2xC4) = C4:Q8:C4φ: C2xC4/C2C4 ⊆ Out C2xQ8328-(C2xQ8).37(C2xC4)128,861
(C2xQ8).38(C2xC4) = C2xC42.3C4φ: C2xC4/C2C4 ⊆ Out C2xQ832(C2xQ8).38(C2xC4)128,863
(C2xQ8).39(C2xC4) = (C2xD4).135D4φ: C2xC4/C2C4 ⊆ Out C2xQ8164(C2xQ8).39(C2xC4)128,864
(C2xQ8).40(C2xC4) = (C2xD4).137D4φ: C2xC4/C2C4 ⊆ Out C2xQ8328-(C2xQ8).40(C2xC4)128,867
(C2xQ8).41(C2xC4) = (C2xQ8).Q8φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).41(C2xC4)128,126
(C2xQ8).42(C2xC4) = (C22xC8):C4φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).42(C2xC4)128,127
(C2xQ8).43(C2xC4) = C42.46D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).43(C2xC4)128,213
(C2xQ8).44(C2xC4) = C42.373D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).44(C2xC4)128,214
(C2xQ8).45(C2xC4) = C42.47D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).45(C2xC4)128,215
(C2xQ8).46(C2xC4) = C42.401D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).46(C2xC4)128,217
(C2xQ8).47(C2xC4) = C42.316D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).47(C2xC4)128,225
(C2xQ8).48(C2xC4) = C42.305D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).48(C2xC4)128,226
(C2xQ8).49(C2xC4) = C42.52D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).49(C2xC4)128,227
(C2xQ8).50(C2xC4) = C42.54D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).50(C2xC4)128,229
(C2xQ8).51(C2xC4) = C8:12SD16φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).51(C2xC4)128,314
(C2xQ8).52(C2xC4) = D4.M4(2)φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).52(C2xC4)128,317
(C2xQ8).53(C2xC4) = C8:9SD16φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).53(C2xC4)128,322
(C2xQ8).54(C2xC4) = C8:6Q16φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).54(C2xC4)128,323
(C2xQ8).55(C2xC4) = C8:M4(2)φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).55(C2xC4)128,324
(C2xQ8).56(C2xC4) = C8.M4(2)φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).56(C2xC4)128,325
(C2xQ8).57(C2xC4) = 2- 1+4:2C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).57(C2xC4)128,525
(C2xQ8).58(C2xC4) = 2+ 1+4:4C4φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).58(C2xC4)128,526
(C2xQ8).59(C2xC4) = C4.10D4:2C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).59(C2xC4)128,589
(C2xQ8).60(C2xC4) = M4(2).40D4φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).60(C2xC4)128,590
(C2xQ8).61(C2xC4) = C24.72D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).61(C2xC4)128,603
(C2xQ8).62(C2xC4) = C24.73D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).62(C2xC4)128,605
(C2xQ8).63(C2xC4) = M4(2).43D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).63(C2xC4)128,608
(C2xQ8).64(C2xC4) = (C2xC4):9Q16φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).64(C2xC4)128,610
(C2xQ8).65(C2xC4) = M4(2).44D4φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).65(C2xC4)128,613
(C2xQ8).66(C2xC4) = M4(2):19D4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8).66(C2xC4)128,616
(C2xQ8).67(C2xC4) = C4:Q8:15C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).67(C2xC4)128,618
(C2xQ8).68(C2xC4) = C4.4D4:13C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).68(C2xC4)128,620
(C2xQ8).69(C2xC4) = C24.135D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).69(C2xC4)128,624
(C2xQ8).70(C2xC4) = C24.75D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).70(C2xC4)128,626
(C2xQ8).71(C2xC4) = C42:7D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).71(C2xC4)128,629
(C2xQ8).72(C2xC4) = M4(2).46D4φ: C2xC4/C2C22 ⊆ Out C2xQ8328-(C2xQ8).72(C2xC4)128,634
(C2xQ8).73(C2xC4) = M4(2).47D4φ: C2xC4/C2C22 ⊆ Out C2xQ8168+(C2xQ8).73(C2xC4)128,635
(C2xQ8).74(C2xC4) = C42.6D4φ: C2xC4/C2C22 ⊆ Out C2xQ8328-(C2xQ8).74(C2xC4)128,637
(C2xQ8).75(C2xC4) = M4(2).49D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).75(C2xC4)128,640
(C2xQ8).76(C2xC4) = C4.(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xQ8328-(C2xQ8).76(C2xC4)128,641
(C2xQ8).77(C2xC4) = (C2xC8):4D4φ: C2xC4/C2C22 ⊆ Out C2xQ8168+(C2xQ8).77(C2xC4)128,642
(C2xQ8).78(C2xC4) = C42.7D4φ: C2xC4/C2C22 ⊆ Out C2xQ8328-(C2xQ8).78(C2xC4)128,644
(C2xQ8).79(C2xC4) = C4.68(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).79(C2xC4)128,659
(C2xQ8).80(C2xC4) = C2.(C4xQ16)φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).80(C2xC4)128,660
(C2xQ8).81(C2xC4) = M4(2).24D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).81(C2xC4)128,661
(C2xQ8).82(C2xC4) = C4.10D4:3C4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).82(C2xC4)128,662
(C2xQ8).83(C2xC4) = C42.427D4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8).83(C2xC4)128,664
(C2xQ8).84(C2xC4) = C2.(C8:8D4)φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).84(C2xC4)128,665
(C2xQ8).85(C2xC4) = C2.(C8:D4)φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).85(C2xC4)128,667
(C2xQ8).86(C2xC4) = C42.428D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).86(C2xC4)128,669
(C2xQ8).87(C2xC4) = C42.107D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).87(C2xC4)128,670
(C2xQ8).88(C2xC4) = C42.431D4φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).88(C2xC4)128,688
(C2xQ8).89(C2xC4) = C42.433D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).89(C2xC4)128,690
(C2xQ8).90(C2xC4) = C42.110D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).90(C2xC4)128,691
(C2xQ8).91(C2xC4) = C42.111D4φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).91(C2xC4)128,692
(C2xQ8).92(C2xC4) = C43:C2φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).92(C2xC4)128,694
(C2xQ8).93(C2xC4) = C42:8D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).93(C2xC4)128,695
(C2xQ8).94(C2xC4) = (C2xC4):9SD16φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).94(C2xC4)128,700
(C2xQ8).95(C2xC4) = (C2xC4):6Q16φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).95(C2xC4)128,701
(C2xQ8).96(C2xC4) = (C2xQ16):10C4φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).96(C2xC4)128,703
(C2xQ8).97(C2xC4) = C8:(C22:C4)φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).97(C2xC4)128,705
(C2xQ8).98(C2xC4) = C42.326D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).98(C2xC4)128,706
(C2xQ8).99(C2xC4) = C42.116D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).99(C2xC4)128,707
(C2xQ8).100(C2xC4) = M4(2).30D4φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).100(C2xC4)128,708
(C2xQ8).101(C2xC4) = M4(2).31D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).101(C2xC4)128,709
(C2xQ8).102(C2xC4) = M4(2).33D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).102(C2xC4)128,711
(C2xQ8).103(C2xC4) = M4(2):13D4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).103(C2xC4)128,712
(C2xQ8).104(C2xC4) = C42.117D4φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).104(C2xC4)128,713
(C2xQ8).105(C2xC4) = C42.119D4φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).105(C2xC4)128,715
(C2xQ8).106(C2xC4) = C4:Q8:29C4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8).106(C2xC4)128,858
(C2xQ8).107(C2xC4) = C4.4D4:C4φ: C2xC4/C2C22 ⊆ Out C2xQ8168+(C2xQ8).107(C2xC4)128,860
(C2xQ8).108(C2xC4) = C2xC42.C4φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).108(C2xC4)128,862
(C2xQ8).109(C2xC4) = C4:Q8.C4φ: C2xC4/C2C22 ⊆ Out C2xQ8328-(C2xQ8).109(C2xC4)128,865
(C2xQ8).110(C2xC4) = C42:4Q8φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).110(C2xC4)128,1063
(C2xQ8).111(C2xC4) = C23.214C24φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).111(C2xC4)128,1064
(C2xQ8).112(C2xC4) = C23.251C24φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).112(C2xC4)128,1101
(C2xQ8).113(C2xC4) = C24.227C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).113(C2xC4)128,1110
(C2xQ8).114(C2xC4) = C23.263C24φ: C2xC4/C2C22 ⊆ Out C2xQ8128(C2xQ8).114(C2xC4)128,1113
(C2xQ8).115(C2xC4) = C42.279C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).115(C2xC4)128,1682
(C2xQ8).116(C2xC4) = M4(2).51D4φ: C2xC4/C2C22 ⊆ Out C2xQ8164(C2xQ8).116(C2xC4)128,1688
(C2xQ8).117(C2xC4) = M4(2)oD8φ: C2xC4/C2C22 ⊆ Out C2xQ8324(C2xQ8).117(C2xC4)128,1689
(C2xQ8).118(C2xC4) = C42.287C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).118(C2xC4)128,1693
(C2xQ8).119(C2xC4) = M4(2):9Q8φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).119(C2xC4)128,1694
(C2xQ8).120(C2xC4) = C42.292C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).120(C2xC4)128,1699
(C2xQ8).121(C2xC4) = C42.293C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).121(C2xC4)128,1700
(C2xQ8).122(C2xC4) = C42.297C23φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).122(C2xC4)128,1708
(C2xQ8).123(C2xC4) = C42.298C23φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).123(C2xC4)128,1709
(C2xQ8).124(C2xC4) = C42.299C23φ: C2xC4/C2C22 ⊆ Out C2xQ832(C2xQ8).124(C2xC4)128,1710
(C2xQ8).125(C2xC4) = C42.694C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).125(C2xC4)128,1711
(C2xQ8).126(C2xC4) = C42.300C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).126(C2xC4)128,1712
(C2xQ8).127(C2xC4) = C42.301C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).127(C2xC4)128,1713
(C2xQ8).128(C2xC4) = C42.305C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).128(C2xC4)128,1719
(C2xQ8).129(C2xC4) = C42.307C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).129(C2xC4)128,1724
(C2xQ8).130(C2xC4) = C42.310C23φ: C2xC4/C2C22 ⊆ Out C2xQ864(C2xQ8).130(C2xC4)128,1727
(C2xQ8).131(C2xC4) = C8xSD16φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).131(C2xC4)128,308
(C2xQ8).132(C2xC4) = C8xQ16φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).132(C2xC4)128,309
(C2xQ8).133(C2xC4) = SD16:C8φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).133(C2xC4)128,310
(C2xQ8).134(C2xC4) = Q16:5C8φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).134(C2xC4)128,311
(C2xQ8).135(C2xC4) = C8:15SD16φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).135(C2xC4)128,315
(C2xQ8).136(C2xC4) = C8:9Q16φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).136(C2xC4)128,316
(C2xQ8).137(C2xC4) = Q8.M4(2)φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).137(C2xC4)128,319
(C2xQ8).138(C2xC4) = Q8:2M4(2)φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).138(C2xC4)128,320
(C2xQ8).139(C2xC4) = C4xC4.10D4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).139(C2xC4)128,488
(C2xQ8).140(C2xC4) = C23.5C42φ: C2xC4/C4C2 ⊆ Out C2xQ8324(C2xQ8).140(C2xC4)128,489
(C2xQ8).141(C2xC4) = Q8.C42φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).141(C2xC4)128,496
(C2xQ8).142(C2xC4) = D4.3C42φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).142(C2xC4)128,497
(C2xQ8).143(C2xC4) = Q8:(C4:C4)φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).143(C2xC4)128,595
(C2xQ8).144(C2xC4) = Q8:C4:C4φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).144(C2xC4)128,597
(C2xQ8).145(C2xC4) = M4(2).42D4φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).145(C2xC4)128,598
(C2xQ8).146(C2xC4) = (C2xSD16):15C4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).146(C2xC4)128,612
(C2xQ8).147(C2xC4) = C4xC4:Q8φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).147(C2xC4)128,1039
(C2xQ8).148(C2xC4) = C42.159D4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).148(C2xC4)128,1055
(C2xQ8).149(C2xC4) = C42.161D4φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).149(C2xC4)128,1059
(C2xQ8).150(C2xC4) = C23.244C24φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).150(C2xC4)128,1094
(C2xQ8).151(C2xC4) = C23.247C24φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).151(C2xC4)128,1097
(C2xQ8).152(C2xC4) = C42.264C23φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).152(C2xC4)128,1661
(C2xQ8).153(C2xC4) = C42.265C23φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).153(C2xC4)128,1662
(C2xQ8).154(C2xC4) = C42.681C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).154(C2xC4)128,1663
(C2xQ8).155(C2xC4) = C42.266C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).155(C2xC4)128,1664
(C2xQ8).156(C2xC4) = M4(2):22D4φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).156(C2xC4)128,1665
(C2xQ8).157(C2xC4) = M4(2):23D4φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).157(C2xC4)128,1667
(C2xQ8).158(C2xC4) = C2xC4xQ16φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).158(C2xC4)128,1670
(C2xQ8).159(C2xC4) = C2xQ16:C4φ: C2xC4/C4C2 ⊆ Out C2xQ8128(C2xQ8).159(C2xC4)128,1673
(C2xQ8).160(C2xC4) = C2xC8oD8φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).160(C2xC4)128,1685
(C2xQ8).161(C2xC4) = C2xC8.26D4φ: C2xC4/C4C2 ⊆ Out C2xQ832(C2xQ8).161(C2xC4)128,1686
(C2xQ8).162(C2xC4) = C42.283C23φ: C2xC4/C4C2 ⊆ Out C2xQ8324(C2xQ8).162(C2xC4)128,1687
(C2xQ8).163(C2xC4) = C42.286C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).163(C2xC4)128,1692
(C2xQ8).164(C2xC4) = C42.291C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).164(C2xC4)128,1698
(C2xQ8).165(C2xC4) = C42.294C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).165(C2xC4)128,1701
(C2xQ8).166(C2xC4) = C42.696C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).166(C2xC4)128,1717
(C2xQ8).167(C2xC4) = C42.304C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).167(C2xC4)128,1718
(C2xQ8).168(C2xC4) = C42.308C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).168(C2xC4)128,1725
(C2xQ8).169(C2xC4) = C42.309C23φ: C2xC4/C4C2 ⊆ Out C2xQ864(C2xQ8).169(C2xC4)128,1726
(C2xQ8).170(C2xC4) = C4.22C25φ: C2xC4/C4C2 ⊆ Out C2xQ8324(C2xQ8).170(C2xC4)128,2305
(C2xQ8).171(C2xC4) = C2xQ8:C8φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).171(C2xC4)128,207
(C2xQ8).172(C2xC4) = C42.455D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).172(C2xC4)128,208
(C2xQ8).173(C2xC4) = C42.397D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).173(C2xC4)128,209
(C2xQ8).174(C2xC4) = C42.399D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).174(C2xC4)128,211
(C2xQ8).175(C2xC4) = Q8:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).175(C2xC4)128,219
(C2xQ8).176(C2xC4) = C42.374D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).176(C2xC4)128,220
(C2xQ8).177(C2xC4) = D4:4M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).177(C2xC4)128,221
(C2xQ8).178(C2xC4) = Q8:5M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).178(C2xC4)128,223
(C2xQ8).179(C2xC4) = C4xC4wrC2φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).179(C2xC4)128,490
(C2xQ8).180(C2xC4) = D4.C42φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).180(C2xC4)128,491
(C2xQ8).181(C2xC4) = C4xQ8:C4φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).181(C2xC4)128,493
(C2xQ8).182(C2xC4) = Q8:C42φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).182(C2xC4)128,495
(C2xQ8).183(C2xC4) = C24.155D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).183(C2xC4)128,519
(C2xQ8).184(C2xC4) = C24.65D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).184(C2xC4)128,520
(C2xQ8).185(C2xC4) = C24.66D4φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).185(C2xC4)128,521
(C2xQ8).186(C2xC4) = C4oD4.D4φ: C2xC4/C22C2 ⊆ Out C2xQ8168+(C2xQ8).186(C2xC4)128,527
(C2xQ8).187(C2xC4) = (C22xQ8):C4φ: C2xC4/C22C2 ⊆ Out C2xQ8328-(C2xQ8).187(C2xC4)128,528
(C2xQ8).188(C2xC4) = C42.99D4φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).188(C2xC4)128,535
(C2xQ8).189(C2xC4) = C42.101D4φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).189(C2xC4)128,537
(C2xQ8).190(C2xC4) = C42.102D4φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).190(C2xC4)128,538
(C2xQ8).191(C2xC4) = C42:14Q8φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).191(C2xC4)128,1027
(C2xQ8).192(C2xC4) = C23.192C24φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).192(C2xC4)128,1042
(C2xQ8).193(C2xC4) = C23.202C24φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).193(C2xC4)128,1052
(C2xQ8).194(C2xC4) = Q8xC22:C4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).194(C2xC4)128,1072
(C2xQ8).195(C2xC4) = C23.237C24φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).195(C2xC4)128,1087
(C2xQ8).196(C2xC4) = C23.238C24φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).196(C2xC4)128,1088
(C2xQ8).197(C2xC4) = C2x(C22xC8):C2φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).197(C2xC4)128,1610
(C2xQ8).198(C2xC4) = C24.73(C2xC4)φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).198(C2xC4)128,1611
(C2xQ8).199(C2xC4) = C23.4C24φ: C2xC4/C22C2 ⊆ Out C2xQ8328-(C2xQ8).199(C2xC4)128,1616
(C2xQ8).200(C2xC4) = C22xC4.10D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).200(C2xC4)128,1618
(C2xQ8).201(C2xC4) = C2xM4(2).8C22φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).201(C2xC4)128,1619
(C2xQ8).202(C2xC4) = M4(2).24C23φ: C2xC4/C22C2 ⊆ Out C2xQ8168+(C2xQ8).202(C2xC4)128,1620
(C2xQ8).203(C2xC4) = M4(2).25C23φ: C2xC4/C22C2 ⊆ Out C2xQ8328-(C2xQ8).203(C2xC4)128,1621
(C2xQ8).204(C2xC4) = C2xC23.24D4φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).204(C2xC4)128,1624
(C2xQ8).205(C2xC4) = C42.260C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).205(C2xC4)128,1654
(C2xQ8).206(C2xC4) = C42.261C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).206(C2xC4)128,1655
(C2xQ8).207(C2xC4) = C42.678C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).207(C2xC4)128,1657
(C2xQ8).208(C2xC4) = C2xC8:4Q8φ: C2xC4/C22C2 ⊆ Out C2xQ8128(C2xQ8).208(C2xC4)128,1691
(C2xQ8).209(C2xC4) = C42.290C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).209(C2xC4)128,1697
(C2xQ8).210(C2xC4) = D4:6M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).210(C2xC4)128,1702
(C2xQ8).211(C2xC4) = C42.302C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).211(C2xC4)128,1715
(C2xQ8).212(C2xC4) = Q8.4M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).212(C2xC4)128,1716
(C2xQ8).213(C2xC4) = C42.698C23φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).213(C2xC4)128,1721
(C2xQ8).214(C2xC4) = D4:8M4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ864(C2xQ8).214(C2xC4)128,1722
(C2xQ8).215(C2xC4) = C2xQ8oM4(2)φ: C2xC4/C22C2 ⊆ Out C2xQ832(C2xQ8).215(C2xC4)128,2304
(C2xQ8).216(C2xC4) = Q8xC42φ: trivial image128(C2xQ8).216(C2xC4)128,1004
(C2xQ8).217(C2xC4) = Q8:4C42φ: trivial image128(C2xQ8).217(C2xC4)128,1008
(C2xQ8).218(C2xC4) = C23.223C24φ: trivial image64(C2xQ8).218(C2xC4)128,1073
(C2xQ8).219(C2xC4) = Q8xC4:C4φ: trivial image128(C2xQ8).219(C2xC4)128,1082
(C2xQ8).220(C2xC4) = C23.233C24φ: trivial image128(C2xQ8).220(C2xC4)128,1083
(C2xQ8).221(C2xC4) = C4xC8oD4φ: trivial image64(C2xQ8).221(C2xC4)128,1606
(C2xQ8).222(C2xC4) = D4.5C42φ: trivial image64(C2xQ8).222(C2xC4)128,1607
(C2xQ8).223(C2xC4) = D4o(C22:C8)φ: trivial image32(C2xQ8).223(C2xC4)128,1612
(C2xQ8).224(C2xC4) = C42.674C23φ: trivial image64(C2xQ8).224(C2xC4)128,1638
(C2xQ8).225(C2xC4) = Q8xC2xC8φ: trivial image128(C2xQ8).225(C2xC4)128,1690
(C2xQ8).226(C2xC4) = Q8xM4(2)φ: trivial image64(C2xQ8).226(C2xC4)128,1695
(C2xQ8).227(C2xC4) = C8xC4oD4φ: trivial image64(C2xQ8).227(C2xC4)128,1696
(C2xQ8).228(C2xC4) = Q8:6M4(2)φ: trivial image64(C2xQ8).228(C2xC4)128,1703
(C2xQ8).229(C2xC4) = C42.695C23φ: trivial image64(C2xQ8).229(C2xC4)128,1714
(C2xQ8).230(C2xC4) = C42.697C23φ: trivial image64(C2xQ8).230(C2xC4)128,1720
(C2xQ8).231(C2xC4) = Q8:7M4(2)φ: trivial image64(C2xQ8).231(C2xC4)128,1723
(C2xQ8).232(C2xC4) = C22xC8oD4φ: trivial image64(C2xQ8).232(C2xC4)128,2303

׿
x
:
Z
F
o
wr
Q
<