extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8)⋊1(C2×C4) = C2×C23.31D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8):1(C2xC4) | 128,231 |
(C2×Q8)⋊2(C2×C4) = C24.150D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 16 | | (C2xQ8):2(C2xC4) | 128,236 |
(C2×Q8)⋊3(C2×C4) = C2×C42⋊3C4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8):3(C2xC4) | 128,857 |
(C2×Q8)⋊4(C2×C4) = C24.39D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8):4(C2xC4) | 128,859 |
(C2×Q8)⋊5(C2×C4) = C24.160D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):5(C2xC4) | 128,604 |
(C2×Q8)⋊6(C2×C4) = (C2×SD16)⋊14C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):6(C2xC4) | 128,609 |
(C2×Q8)⋊7(C2×C4) = C8.C22⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8):7(C2xC4) | 128,614 |
(C2×Q8)⋊8(C2×C4) = C24.23D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8):8(C2xC4) | 128,617 |
(C2×Q8)⋊9(C2×C4) = (C2×C4)≀C2 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | | (C2xQ8):9(C2xC4) | 128,628 |
(C2×Q8)⋊10(C2×C4) = C42.5D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8):10(C2xC4) | 128,636 |
(C2×Q8)⋊11(C2×C4) = C42.426D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):11(C2xC4) | 128,638 |
(C2×Q8)⋊12(C2×C4) = C42⋊D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8):12(C2xC4) | 128,643 |
(C2×Q8)⋊13(C2×C4) = C23.211C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):13(C2xC4) | 128,1061 |
(C2×Q8)⋊14(C2×C4) = C24.205C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):14(C2xC4) | 128,1069 |
(C2×Q8)⋊15(C2×C4) = C23.250C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):15(C2xC4) | 128,1100 |
(C2×Q8)⋊16(C2×C4) = C24.221C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):16(C2xC4) | 128,1104 |
(C2×Q8)⋊17(C2×C4) = C23.261C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):17(C2xC4) | 128,1111 |
(C2×Q8)⋊18(C2×C4) = 2- 1+4⋊4C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):18(C2xC4) | 128,1630 |
(C2×Q8)⋊19(C2×C4) = 2- 1+4⋊5C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):19(C2xC4) | 128,1633 |
(C2×Q8)⋊20(C2×C4) = C42.276C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8):20(C2xC4) | 128,1679 |
(C2×Q8)⋊21(C2×C4) = C42.278C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8):21(C2xC4) | 128,1681 |
(C2×Q8)⋊22(C2×C4) = C4×C22⋊Q8 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):22(C2xC4) | 128,1034 |
(C2×Q8)⋊23(C2×C4) = C4×C4.4D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):23(C2xC4) | 128,1035 |
(C2×Q8)⋊24(C2×C4) = C42.160D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):24(C2xC4) | 128,1058 |
(C2×Q8)⋊25(C2×C4) = C24.558C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):25(C2xC4) | 128,1092 |
(C2×Q8)⋊26(C2×C4) = C24.220C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):26(C2xC4) | 128,1099 |
(C2×Q8)⋊27(C2×C4) = C2×C4×SD16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):27(C2xC4) | 128,1669 |
(C2×Q8)⋊28(C2×C4) = C2×SD16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):28(C2xC4) | 128,1672 |
(C2×Q8)⋊29(C2×C4) = C4×C8.C22 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):29(C2xC4) | 128,1677 |
(C2×Q8)⋊30(C2×C4) = C4×2- 1+4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):30(C2xC4) | 128,2162 |
(C2×Q8)⋊31(C2×C4) = C2×C23.67C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8):31(C2xC4) | 128,1026 |
(C2×Q8)⋊32(C2×C4) = C23.179C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):32(C2xC4) | 128,1029 |
(C2×Q8)⋊33(C2×C4) = C24.542C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):33(C2xC4) | 128,1043 |
(C2×Q8)⋊34(C2×C4) = C24.549C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):34(C2xC4) | 128,1071 |
(C2×Q8)⋊35(C2×C4) = C2×C23.C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):35(C2xC4) | 128,1614 |
(C2×Q8)⋊36(C2×C4) = C23.C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8):36(C2xC4) | 128,1615 |
(C2×Q8)⋊37(C2×C4) = C22×Q8⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8):37(C2xC4) | 128,1623 |
(C2×Q8)⋊38(C2×C4) = C2×C23.38D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):38(C2xC4) | 128,1626 |
(C2×Q8)⋊39(C2×C4) = C2×C23.36D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):39(C2xC4) | 128,1627 |
(C2×Q8)⋊40(C2×C4) = C24.98D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):40(C2xC4) | 128,1628 |
(C2×Q8)⋊41(C2×C4) = C22×C4≀C2 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):41(C2xC4) | 128,1631 |
(C2×Q8)⋊42(C2×C4) = C2×C42⋊C22 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):42(C2xC4) | 128,1632 |
(C2×Q8)⋊43(C2×C4) = C2×C23.32C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8):43(C2xC4) | 128,2158 |
(C2×Q8)⋊44(C2×C4) = C22.14C25 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8):44(C2xC4) | 128,2160 |
(C2×Q8)⋊45(C2×C4) = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2xQ8):45(C2xC4) | 128,2156 |
(C2×Q8)⋊46(C2×C4) = C2×C23.33C23 | φ: trivial image | 64 | | (C2xQ8):46(C2xC4) | 128,2159 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).1(C2×C4) = C42.3D4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).1(C2xC4) | 128,136 |
(C2×Q8).2(C2×C4) = C42.4D4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).2(C2xC4) | 128,137 |
(C2×Q8).3(C2×C4) = C42.375D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).3(C2xC4) | 128,232 |
(C2×Q8).4(C2×C4) = C24.53D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).4(C2xC4) | 128,233 |
(C2×Q8).5(C2×C4) = C42.404D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).5(C2xC4) | 128,235 |
(C2×Q8).6(C2×C4) = C42.56D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).6(C2xC4) | 128,238 |
(C2×Q8).7(C2×C4) = C24.55D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).7(C2xC4) | 128,240 |
(C2×Q8).8(C2×C4) = C42.57D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).8(C2xC4) | 128,241 |
(C2×Q8).9(C2×C4) = C24.57D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).9(C2xC4) | 128,243 |
(C2×Q8).10(C2×C4) = C42.58D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).10(C2xC4) | 128,244 |
(C2×Q8).11(C2×C4) = C24.58D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).11(C2xC4) | 128,245 |
(C2×Q8).12(C2×C4) = C42.60D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).12(C2xC4) | 128,247 |
(C2×Q8).13(C2×C4) = C24.59D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).13(C2xC4) | 128,248 |
(C2×Q8).14(C2×C4) = C42.62D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).14(C2xC4) | 128,250 |
(C2×Q8).15(C2×C4) = C24.61D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).15(C2xC4) | 128,252 |
(C2×Q8).16(C2×C4) = C42.63D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).16(C2xC4) | 128,253 |
(C2×Q8).17(C2×C4) = C2×C42.C22 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).17(C2xC4) | 128,254 |
(C2×Q8).18(C2×C4) = C42.66D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).18(C2xC4) | 128,256 |
(C2×Q8).19(C2×C4) = C42.405D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).19(C2xC4) | 128,257 |
(C2×Q8).20(C2×C4) = C42.407D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).20(C2xC4) | 128,259 |
(C2×Q8).21(C2×C4) = C42.376D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).21(C2xC4) | 128,261 |
(C2×Q8).22(C2×C4) = C42.67D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).22(C2xC4) | 128,262 |
(C2×Q8).23(C2×C4) = C42.69D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).23(C2xC4) | 128,264 |
(C2×Q8).24(C2×C4) = C42.70D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).24(C2xC4) | 128,265 |
(C2×Q8).25(C2×C4) = C42.72D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).25(C2xC4) | 128,267 |
(C2×Q8).26(C2×C4) = C42.73D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).26(C2xC4) | 128,268 |
(C2×Q8).27(C2×C4) = C2×C4.6Q16 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 128 | | (C2xQ8).27(C2xC4) | 128,273 |
(C2×Q8).28(C2×C4) = C42.410D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).28(C2xC4) | 128,274 |
(C2×Q8).29(C2×C4) = C42.411D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).29(C2xC4) | 128,275 |
(C2×Q8).30(C2×C4) = C42.415D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).30(C2xC4) | 128,280 |
(C2×Q8).31(C2×C4) = C42.79D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).31(C2xC4) | 128,282 |
(C2×Q8).32(C2×C4) = C42.80D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).32(C2xC4) | 128,283 |
(C2×Q8).33(C2×C4) = C42.418D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).33(C2xC4) | 128,286 |
(C2×Q8).34(C2×C4) = C42.85D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).34(C2xC4) | 128,290 |
(C2×Q8).35(C2×C4) = C42.86D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).35(C2xC4) | 128,291 |
(C2×Q8).36(C2×C4) = C42.87D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).36(C2xC4) | 128,292 |
(C2×Q8).37(C2×C4) = C4⋊Q8⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).37(C2xC4) | 128,861 |
(C2×Q8).38(C2×C4) = C2×C42.3C4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).38(C2xC4) | 128,863 |
(C2×Q8).39(C2×C4) = (C2×D4).135D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).39(C2xC4) | 128,864 |
(C2×Q8).40(C2×C4) = (C2×D4).137D4 | φ: C2×C4/C2 → C4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).40(C2xC4) | 128,867 |
(C2×Q8).41(C2×C4) = (C2×Q8).Q8 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).41(C2xC4) | 128,126 |
(C2×Q8).42(C2×C4) = (C22×C8)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).42(C2xC4) | 128,127 |
(C2×Q8).43(C2×C4) = C42.46D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).43(C2xC4) | 128,213 |
(C2×Q8).44(C2×C4) = C42.373D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).44(C2xC4) | 128,214 |
(C2×Q8).45(C2×C4) = C42.47D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).45(C2xC4) | 128,215 |
(C2×Q8).46(C2×C4) = C42.401D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).46(C2xC4) | 128,217 |
(C2×Q8).47(C2×C4) = C42.316D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).47(C2xC4) | 128,225 |
(C2×Q8).48(C2×C4) = C42.305D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).48(C2xC4) | 128,226 |
(C2×Q8).49(C2×C4) = C42.52D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).49(C2xC4) | 128,227 |
(C2×Q8).50(C2×C4) = C42.54D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).50(C2xC4) | 128,229 |
(C2×Q8).51(C2×C4) = C8⋊12SD16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).51(C2xC4) | 128,314 |
(C2×Q8).52(C2×C4) = D4.M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).52(C2xC4) | 128,317 |
(C2×Q8).53(C2×C4) = C8⋊9SD16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).53(C2xC4) | 128,322 |
(C2×Q8).54(C2×C4) = C8⋊6Q16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).54(C2xC4) | 128,323 |
(C2×Q8).55(C2×C4) = C8⋊M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).55(C2xC4) | 128,324 |
(C2×Q8).56(C2×C4) = C8.M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).56(C2xC4) | 128,325 |
(C2×Q8).57(C2×C4) = 2- 1+4⋊2C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).57(C2xC4) | 128,525 |
(C2×Q8).58(C2×C4) = 2+ 1+4⋊4C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).58(C2xC4) | 128,526 |
(C2×Q8).59(C2×C4) = C4.10D4⋊2C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).59(C2xC4) | 128,589 |
(C2×Q8).60(C2×C4) = M4(2).40D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).60(C2xC4) | 128,590 |
(C2×Q8).61(C2×C4) = C24.72D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).61(C2xC4) | 128,603 |
(C2×Q8).62(C2×C4) = C24.73D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).62(C2xC4) | 128,605 |
(C2×Q8).63(C2×C4) = M4(2).43D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).63(C2xC4) | 128,608 |
(C2×Q8).64(C2×C4) = (C2×C4)⋊9Q16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).64(C2xC4) | 128,610 |
(C2×Q8).65(C2×C4) = M4(2).44D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).65(C2xC4) | 128,613 |
(C2×Q8).66(C2×C4) = M4(2)⋊19D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).66(C2xC4) | 128,616 |
(C2×Q8).67(C2×C4) = C4⋊Q8⋊15C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).67(C2xC4) | 128,618 |
(C2×Q8).68(C2×C4) = C4.4D4⋊13C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).68(C2xC4) | 128,620 |
(C2×Q8).69(C2×C4) = C24.135D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).69(C2xC4) | 128,624 |
(C2×Q8).70(C2×C4) = C24.75D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).70(C2xC4) | 128,626 |
(C2×Q8).71(C2×C4) = C42⋊7D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).71(C2xC4) | 128,629 |
(C2×Q8).72(C2×C4) = M4(2).46D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).72(C2xC4) | 128,634 |
(C2×Q8).73(C2×C4) = M4(2).47D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).73(C2xC4) | 128,635 |
(C2×Q8).74(C2×C4) = C42.6D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).74(C2xC4) | 128,637 |
(C2×Q8).75(C2×C4) = M4(2).49D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).75(C2xC4) | 128,640 |
(C2×Q8).76(C2×C4) = C4.(C4×D4) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).76(C2xC4) | 128,641 |
(C2×Q8).77(C2×C4) = (C2×C8)⋊4D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).77(C2xC4) | 128,642 |
(C2×Q8).78(C2×C4) = C42.7D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).78(C2xC4) | 128,644 |
(C2×Q8).79(C2×C4) = C4.68(C4×D4) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).79(C2xC4) | 128,659 |
(C2×Q8).80(C2×C4) = C2.(C4×Q16) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).80(C2xC4) | 128,660 |
(C2×Q8).81(C2×C4) = M4(2).24D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).81(C2xC4) | 128,661 |
(C2×Q8).82(C2×C4) = C4.10D4⋊3C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).82(C2xC4) | 128,662 |
(C2×Q8).83(C2×C4) = C42.427D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).83(C2xC4) | 128,664 |
(C2×Q8).84(C2×C4) = C2.(C8⋊8D4) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).84(C2xC4) | 128,665 |
(C2×Q8).85(C2×C4) = C2.(C8⋊D4) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).85(C2xC4) | 128,667 |
(C2×Q8).86(C2×C4) = C42.428D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).86(C2xC4) | 128,669 |
(C2×Q8).87(C2×C4) = C42.107D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).87(C2xC4) | 128,670 |
(C2×Q8).88(C2×C4) = C42.431D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).88(C2xC4) | 128,688 |
(C2×Q8).89(C2×C4) = C42.433D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).89(C2xC4) | 128,690 |
(C2×Q8).90(C2×C4) = C42.110D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).90(C2xC4) | 128,691 |
(C2×Q8).91(C2×C4) = C42.111D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).91(C2xC4) | 128,692 |
(C2×Q8).92(C2×C4) = C43⋊C2 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).92(C2xC4) | 128,694 |
(C2×Q8).93(C2×C4) = C42⋊8D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).93(C2xC4) | 128,695 |
(C2×Q8).94(C2×C4) = (C2×C4)⋊9SD16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).94(C2xC4) | 128,700 |
(C2×Q8).95(C2×C4) = (C2×C4)⋊6Q16 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).95(C2xC4) | 128,701 |
(C2×Q8).96(C2×C4) = (C2×Q16)⋊10C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).96(C2xC4) | 128,703 |
(C2×Q8).97(C2×C4) = C8⋊(C22⋊C4) | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).97(C2xC4) | 128,705 |
(C2×Q8).98(C2×C4) = C42.326D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).98(C2xC4) | 128,706 |
(C2×Q8).99(C2×C4) = C42.116D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).99(C2xC4) | 128,707 |
(C2×Q8).100(C2×C4) = M4(2).30D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).100(C2xC4) | 128,708 |
(C2×Q8).101(C2×C4) = M4(2).31D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).101(C2xC4) | 128,709 |
(C2×Q8).102(C2×C4) = M4(2).33D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).102(C2xC4) | 128,711 |
(C2×Q8).103(C2×C4) = M4(2)⋊13D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).103(C2xC4) | 128,712 |
(C2×Q8).104(C2×C4) = C42.117D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).104(C2xC4) | 128,713 |
(C2×Q8).105(C2×C4) = C42.119D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).105(C2xC4) | 128,715 |
(C2×Q8).106(C2×C4) = C4⋊Q8⋊29C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).106(C2xC4) | 128,858 |
(C2×Q8).107(C2×C4) = C4.4D4⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).107(C2xC4) | 128,860 |
(C2×Q8).108(C2×C4) = C2×C42.C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).108(C2xC4) | 128,862 |
(C2×Q8).109(C2×C4) = C4⋊Q8.C4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).109(C2xC4) | 128,865 |
(C2×Q8).110(C2×C4) = C42⋊4Q8 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).110(C2xC4) | 128,1063 |
(C2×Q8).111(C2×C4) = C23.214C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).111(C2xC4) | 128,1064 |
(C2×Q8).112(C2×C4) = C23.251C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).112(C2xC4) | 128,1101 |
(C2×Q8).113(C2×C4) = C24.227C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).113(C2xC4) | 128,1110 |
(C2×Q8).114(C2×C4) = C23.263C24 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).114(C2xC4) | 128,1113 |
(C2×Q8).115(C2×C4) = C42.279C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).115(C2xC4) | 128,1682 |
(C2×Q8).116(C2×C4) = M4(2).51D4 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).116(C2xC4) | 128,1688 |
(C2×Q8).117(C2×C4) = M4(2)○D8 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).117(C2xC4) | 128,1689 |
(C2×Q8).118(C2×C4) = C42.287C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).118(C2xC4) | 128,1693 |
(C2×Q8).119(C2×C4) = M4(2)⋊9Q8 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).119(C2xC4) | 128,1694 |
(C2×Q8).120(C2×C4) = C42.292C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).120(C2xC4) | 128,1699 |
(C2×Q8).121(C2×C4) = C42.293C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).121(C2xC4) | 128,1700 |
(C2×Q8).122(C2×C4) = C42.297C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).122(C2xC4) | 128,1708 |
(C2×Q8).123(C2×C4) = C42.298C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).123(C2xC4) | 128,1709 |
(C2×Q8).124(C2×C4) = C42.299C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).124(C2xC4) | 128,1710 |
(C2×Q8).125(C2×C4) = C42.694C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).125(C2xC4) | 128,1711 |
(C2×Q8).126(C2×C4) = C42.300C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).126(C2xC4) | 128,1712 |
(C2×Q8).127(C2×C4) = C42.301C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).127(C2xC4) | 128,1713 |
(C2×Q8).128(C2×C4) = C42.305C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).128(C2xC4) | 128,1719 |
(C2×Q8).129(C2×C4) = C42.307C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).129(C2xC4) | 128,1724 |
(C2×Q8).130(C2×C4) = C42.310C23 | φ: C2×C4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).130(C2xC4) | 128,1727 |
(C2×Q8).131(C2×C4) = C8×SD16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).131(C2xC4) | 128,308 |
(C2×Q8).132(C2×C4) = C8×Q16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).132(C2xC4) | 128,309 |
(C2×Q8).133(C2×C4) = SD16⋊C8 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).133(C2xC4) | 128,310 |
(C2×Q8).134(C2×C4) = Q16⋊5C8 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).134(C2xC4) | 128,311 |
(C2×Q8).135(C2×C4) = C8⋊15SD16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).135(C2xC4) | 128,315 |
(C2×Q8).136(C2×C4) = C8⋊9Q16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).136(C2xC4) | 128,316 |
(C2×Q8).137(C2×C4) = Q8.M4(2) | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).137(C2xC4) | 128,319 |
(C2×Q8).138(C2×C4) = Q8⋊2M4(2) | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).138(C2xC4) | 128,320 |
(C2×Q8).139(C2×C4) = C4×C4.10D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).139(C2xC4) | 128,488 |
(C2×Q8).140(C2×C4) = C23.5C42 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).140(C2xC4) | 128,489 |
(C2×Q8).141(C2×C4) = Q8.C42 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).141(C2xC4) | 128,496 |
(C2×Q8).142(C2×C4) = D4.3C42 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).142(C2xC4) | 128,497 |
(C2×Q8).143(C2×C4) = Q8⋊(C4⋊C4) | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).143(C2xC4) | 128,595 |
(C2×Q8).144(C2×C4) = Q8⋊C4⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).144(C2xC4) | 128,597 |
(C2×Q8).145(C2×C4) = M4(2).42D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).145(C2xC4) | 128,598 |
(C2×Q8).146(C2×C4) = (C2×SD16)⋊15C4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).146(C2xC4) | 128,612 |
(C2×Q8).147(C2×C4) = C4×C4⋊Q8 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).147(C2xC4) | 128,1039 |
(C2×Q8).148(C2×C4) = C42.159D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).148(C2xC4) | 128,1055 |
(C2×Q8).149(C2×C4) = C42.161D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).149(C2xC4) | 128,1059 |
(C2×Q8).150(C2×C4) = C23.244C24 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).150(C2xC4) | 128,1094 |
(C2×Q8).151(C2×C4) = C23.247C24 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).151(C2xC4) | 128,1097 |
(C2×Q8).152(C2×C4) = C42.264C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).152(C2xC4) | 128,1661 |
(C2×Q8).153(C2×C4) = C42.265C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).153(C2xC4) | 128,1662 |
(C2×Q8).154(C2×C4) = C42.681C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).154(C2xC4) | 128,1663 |
(C2×Q8).155(C2×C4) = C42.266C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).155(C2xC4) | 128,1664 |
(C2×Q8).156(C2×C4) = M4(2)⋊22D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).156(C2xC4) | 128,1665 |
(C2×Q8).157(C2×C4) = M4(2)⋊23D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).157(C2xC4) | 128,1667 |
(C2×Q8).158(C2×C4) = C2×C4×Q16 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).158(C2xC4) | 128,1670 |
(C2×Q8).159(C2×C4) = C2×Q16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).159(C2xC4) | 128,1673 |
(C2×Q8).160(C2×C4) = C2×C8○D8 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).160(C2xC4) | 128,1685 |
(C2×Q8).161(C2×C4) = C2×C8.26D4 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).161(C2xC4) | 128,1686 |
(C2×Q8).162(C2×C4) = C42.283C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).162(C2xC4) | 128,1687 |
(C2×Q8).163(C2×C4) = C42.286C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).163(C2xC4) | 128,1692 |
(C2×Q8).164(C2×C4) = C42.291C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).164(C2xC4) | 128,1698 |
(C2×Q8).165(C2×C4) = C42.294C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).165(C2xC4) | 128,1701 |
(C2×Q8).166(C2×C4) = C42.696C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).166(C2xC4) | 128,1717 |
(C2×Q8).167(C2×C4) = C42.304C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).167(C2xC4) | 128,1718 |
(C2×Q8).168(C2×C4) = C42.308C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).168(C2xC4) | 128,1725 |
(C2×Q8).169(C2×C4) = C42.309C23 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).169(C2xC4) | 128,1726 |
(C2×Q8).170(C2×C4) = C4.22C25 | φ: C2×C4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).170(C2xC4) | 128,2305 |
(C2×Q8).171(C2×C4) = C2×Q8⋊C8 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).171(C2xC4) | 128,207 |
(C2×Q8).172(C2×C4) = C42.455D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).172(C2xC4) | 128,208 |
(C2×Q8).173(C2×C4) = C42.397D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).173(C2xC4) | 128,209 |
(C2×Q8).174(C2×C4) = C42.399D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).174(C2xC4) | 128,211 |
(C2×Q8).175(C2×C4) = Q8⋊M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).175(C2xC4) | 128,219 |
(C2×Q8).176(C2×C4) = C42.374D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).176(C2xC4) | 128,220 |
(C2×Q8).177(C2×C4) = D4⋊4M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).177(C2xC4) | 128,221 |
(C2×Q8).178(C2×C4) = Q8⋊5M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).178(C2xC4) | 128,223 |
(C2×Q8).179(C2×C4) = C4×C4≀C2 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).179(C2xC4) | 128,490 |
(C2×Q8).180(C2×C4) = D4.C42 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).180(C2xC4) | 128,491 |
(C2×Q8).181(C2×C4) = C4×Q8⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).181(C2xC4) | 128,493 |
(C2×Q8).182(C2×C4) = Q8⋊C42 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).182(C2xC4) | 128,495 |
(C2×Q8).183(C2×C4) = C24.155D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).183(C2xC4) | 128,519 |
(C2×Q8).184(C2×C4) = C24.65D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).184(C2xC4) | 128,520 |
(C2×Q8).185(C2×C4) = C24.66D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).185(C2xC4) | 128,521 |
(C2×Q8).186(C2×C4) = C4○D4.D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).186(C2xC4) | 128,527 |
(C2×Q8).187(C2×C4) = (C22×Q8)⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).187(C2xC4) | 128,528 |
(C2×Q8).188(C2×C4) = C42.99D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).188(C2xC4) | 128,535 |
(C2×Q8).189(C2×C4) = C42.101D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).189(C2xC4) | 128,537 |
(C2×Q8).190(C2×C4) = C42.102D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).190(C2xC4) | 128,538 |
(C2×Q8).191(C2×C4) = C42⋊14Q8 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).191(C2xC4) | 128,1027 |
(C2×Q8).192(C2×C4) = C23.192C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).192(C2xC4) | 128,1042 |
(C2×Q8).193(C2×C4) = C23.202C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).193(C2xC4) | 128,1052 |
(C2×Q8).194(C2×C4) = Q8×C22⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).194(C2xC4) | 128,1072 |
(C2×Q8).195(C2×C4) = C23.237C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).195(C2xC4) | 128,1087 |
(C2×Q8).196(C2×C4) = C23.238C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).196(C2xC4) | 128,1088 |
(C2×Q8).197(C2×C4) = C2×(C22×C8)⋊C2 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).197(C2xC4) | 128,1610 |
(C2×Q8).198(C2×C4) = C24.73(C2×C4) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).198(C2xC4) | 128,1611 |
(C2×Q8).199(C2×C4) = C23.4C24 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).199(C2xC4) | 128,1616 |
(C2×Q8).200(C2×C4) = C22×C4.10D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).200(C2xC4) | 128,1618 |
(C2×Q8).201(C2×C4) = C2×M4(2).8C22 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).201(C2xC4) | 128,1619 |
(C2×Q8).202(C2×C4) = M4(2).24C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).202(C2xC4) | 128,1620 |
(C2×Q8).203(C2×C4) = M4(2).25C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).203(C2xC4) | 128,1621 |
(C2×Q8).204(C2×C4) = C2×C23.24D4 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).204(C2xC4) | 128,1624 |
(C2×Q8).205(C2×C4) = C42.260C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).205(C2xC4) | 128,1654 |
(C2×Q8).206(C2×C4) = C42.261C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).206(C2xC4) | 128,1655 |
(C2×Q8).207(C2×C4) = C42.678C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).207(C2xC4) | 128,1657 |
(C2×Q8).208(C2×C4) = C2×C8⋊4Q8 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).208(C2xC4) | 128,1691 |
(C2×Q8).209(C2×C4) = C42.290C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).209(C2xC4) | 128,1697 |
(C2×Q8).210(C2×C4) = D4⋊6M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).210(C2xC4) | 128,1702 |
(C2×Q8).211(C2×C4) = C42.302C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).211(C2xC4) | 128,1715 |
(C2×Q8).212(C2×C4) = Q8.4M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).212(C2xC4) | 128,1716 |
(C2×Q8).213(C2×C4) = C42.698C23 | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).213(C2xC4) | 128,1721 |
(C2×Q8).214(C2×C4) = D4⋊8M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).214(C2xC4) | 128,1722 |
(C2×Q8).215(C2×C4) = C2×Q8○M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).215(C2xC4) | 128,2304 |
(C2×Q8).216(C2×C4) = Q8×C42 | φ: trivial image | 128 | | (C2xQ8).216(C2xC4) | 128,1004 |
(C2×Q8).217(C2×C4) = Q8⋊4C42 | φ: trivial image | 128 | | (C2xQ8).217(C2xC4) | 128,1008 |
(C2×Q8).218(C2×C4) = C23.223C24 | φ: trivial image | 64 | | (C2xQ8).218(C2xC4) | 128,1073 |
(C2×Q8).219(C2×C4) = Q8×C4⋊C4 | φ: trivial image | 128 | | (C2xQ8).219(C2xC4) | 128,1082 |
(C2×Q8).220(C2×C4) = C23.233C24 | φ: trivial image | 128 | | (C2xQ8).220(C2xC4) | 128,1083 |
(C2×Q8).221(C2×C4) = C4×C8○D4 | φ: trivial image | 64 | | (C2xQ8).221(C2xC4) | 128,1606 |
(C2×Q8).222(C2×C4) = D4.5C42 | φ: trivial image | 64 | | (C2xQ8).222(C2xC4) | 128,1607 |
(C2×Q8).223(C2×C4) = D4○(C22⋊C8) | φ: trivial image | 32 | | (C2xQ8).223(C2xC4) | 128,1612 |
(C2×Q8).224(C2×C4) = C42.674C23 | φ: trivial image | 64 | | (C2xQ8).224(C2xC4) | 128,1638 |
(C2×Q8).225(C2×C4) = Q8×C2×C8 | φ: trivial image | 128 | | (C2xQ8).225(C2xC4) | 128,1690 |
(C2×Q8).226(C2×C4) = Q8×M4(2) | φ: trivial image | 64 | | (C2xQ8).226(C2xC4) | 128,1695 |
(C2×Q8).227(C2×C4) = C8×C4○D4 | φ: trivial image | 64 | | (C2xQ8).227(C2xC4) | 128,1696 |
(C2×Q8).228(C2×C4) = Q8⋊6M4(2) | φ: trivial image | 64 | | (C2xQ8).228(C2xC4) | 128,1703 |
(C2×Q8).229(C2×C4) = C42.695C23 | φ: trivial image | 64 | | (C2xQ8).229(C2xC4) | 128,1714 |
(C2×Q8).230(C2×C4) = C42.697C23 | φ: trivial image | 64 | | (C2xQ8).230(C2xC4) | 128,1720 |
(C2×Q8).231(C2×C4) = Q8⋊7M4(2) | φ: trivial image | 64 | | (C2xQ8).231(C2xC4) | 128,1723 |
(C2×Q8).232(C2×C4) = C22×C8○D4 | φ: trivial image | 64 | | (C2xQ8).232(C2xC4) | 128,2303 |