Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C2×C4

Direct product G=N×Q with N=C2×Q8 and Q=C2×C4
dρLabelID
Q8×C22×C4128Q8xC2^2xC4128,2155

Semidirect products G=N:Q with N=C2×Q8 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1(C2×C4) = C2×C23.31D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8):1(C2xC4)128,231
(C2×Q8)⋊2(C2×C4) = C24.150D4φ: C2×C4/C2C4 ⊆ Out C2×Q816(C2xQ8):2(C2xC4)128,236
(C2×Q8)⋊3(C2×C4) = C2×C423C4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8):3(C2xC4)128,857
(C2×Q8)⋊4(C2×C4) = C24.39D4φ: C2×C4/C2C4 ⊆ Out C2×Q8168+(C2xQ8):4(C2xC4)128,859
(C2×Q8)⋊5(C2×C4) = C24.160D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):5(C2xC4)128,604
(C2×Q8)⋊6(C2×C4) = (C2×SD16)⋊14C4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):6(C2xC4)128,609
(C2×Q8)⋊7(C2×C4) = C8.C22⋊C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8):7(C2xC4)128,614
(C2×Q8)⋊8(C2×C4) = C24.23D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8):8(C2xC4)128,617
(C2×Q8)⋊9(C2×C4) = (C2×C4)≀C2φ: C2×C4/C2C22 ⊆ Out C2×Q816(C2xQ8):9(C2xC4)128,628
(C2×Q8)⋊10(C2×C4) = C42.5D4φ: C2×C4/C2C22 ⊆ Out C2×Q8168+(C2xQ8):10(C2xC4)128,636
(C2×Q8)⋊11(C2×C4) = C42.426D4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8):11(C2xC4)128,638
(C2×Q8)⋊12(C2×C4) = C42⋊D4φ: C2×C4/C2C22 ⊆ Out C2×Q8168+(C2xQ8):12(C2xC4)128,643
(C2×Q8)⋊13(C2×C4) = C23.211C24φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):13(C2xC4)128,1061
(C2×Q8)⋊14(C2×C4) = C24.205C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):14(C2xC4)128,1069
(C2×Q8)⋊15(C2×C4) = C23.250C24φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):15(C2xC4)128,1100
(C2×Q8)⋊16(C2×C4) = C24.221C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):16(C2xC4)128,1104
(C2×Q8)⋊17(C2×C4) = C23.261C24φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):17(C2xC4)128,1111
(C2×Q8)⋊18(C2×C4) = 2- 1+44C4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):18(C2xC4)128,1630
(C2×Q8)⋊19(C2×C4) = 2- 1+45C4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8):19(C2xC4)128,1633
(C2×Q8)⋊20(C2×C4) = C42.276C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8):20(C2xC4)128,1679
(C2×Q8)⋊21(C2×C4) = C42.278C23φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8):21(C2xC4)128,1681
(C2×Q8)⋊22(C2×C4) = C4×C22⋊Q8φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):22(C2xC4)128,1034
(C2×Q8)⋊23(C2×C4) = C4×C4.4D4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):23(C2xC4)128,1035
(C2×Q8)⋊24(C2×C4) = C42.160D4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):24(C2xC4)128,1058
(C2×Q8)⋊25(C2×C4) = C24.558C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):25(C2xC4)128,1092
(C2×Q8)⋊26(C2×C4) = C24.220C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):26(C2xC4)128,1099
(C2×Q8)⋊27(C2×C4) = C2×C4×SD16φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):27(C2xC4)128,1669
(C2×Q8)⋊28(C2×C4) = C2×SD16⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):28(C2xC4)128,1672
(C2×Q8)⋊29(C2×C4) = C4×C8.C22φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):29(C2xC4)128,1677
(C2×Q8)⋊30(C2×C4) = C4×2- 1+4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8):30(C2xC4)128,2162
(C2×Q8)⋊31(C2×C4) = C2×C23.67C23φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8):31(C2xC4)128,1026
(C2×Q8)⋊32(C2×C4) = C23.179C24φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):32(C2xC4)128,1029
(C2×Q8)⋊33(C2×C4) = C24.542C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):33(C2xC4)128,1043
(C2×Q8)⋊34(C2×C4) = C24.549C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):34(C2xC4)128,1071
(C2×Q8)⋊35(C2×C4) = C2×C23.C23φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8):35(C2xC4)128,1614
(C2×Q8)⋊36(C2×C4) = C23.C24φ: C2×C4/C22C2 ⊆ Out C2×Q8168+(C2xQ8):36(C2xC4)128,1615
(C2×Q8)⋊37(C2×C4) = C22×Q8⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8):37(C2xC4)128,1623
(C2×Q8)⋊38(C2×C4) = C2×C23.38D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):38(C2xC4)128,1626
(C2×Q8)⋊39(C2×C4) = C2×C23.36D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):39(C2xC4)128,1627
(C2×Q8)⋊40(C2×C4) = C24.98D4φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8):40(C2xC4)128,1628
(C2×Q8)⋊41(C2×C4) = C22×C4≀C2φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8):41(C2xC4)128,1631
(C2×Q8)⋊42(C2×C4) = C2×C42⋊C22φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8):42(C2xC4)128,1632
(C2×Q8)⋊43(C2×C4) = C2×C23.32C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8):43(C2xC4)128,2158
(C2×Q8)⋊44(C2×C4) = C22.14C25φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8):44(C2xC4)128,2160
(C2×Q8)⋊45(C2×C4) = C2×C4×C4○D4φ: trivial image64(C2xQ8):45(C2xC4)128,2156
(C2×Q8)⋊46(C2×C4) = C2×C23.33C23φ: trivial image64(C2xQ8):46(C2xC4)128,2159

Non-split extensions G=N.Q with N=C2×Q8 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×Q8).1(C2×C4) = C42.3D4φ: C2×C4/C1C2×C4 ⊆ Out C2×Q8164(C2xQ8).1(C2xC4)128,136
(C2×Q8).2(C2×C4) = C42.4D4φ: C2×C4/C1C2×C4 ⊆ Out C2×Q8164-(C2xQ8).2(C2xC4)128,137
(C2×Q8).3(C2×C4) = C42.375D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).3(C2xC4)128,232
(C2×Q8).4(C2×C4) = C24.53D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).4(C2xC4)128,233
(C2×Q8).5(C2×C4) = C42.404D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).5(C2xC4)128,235
(C2×Q8).6(C2×C4) = C42.56D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).6(C2xC4)128,238
(C2×Q8).7(C2×C4) = C24.55D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).7(C2xC4)128,240
(C2×Q8).8(C2×C4) = C42.57D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).8(C2xC4)128,241
(C2×Q8).9(C2×C4) = C24.57D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).9(C2xC4)128,243
(C2×Q8).10(C2×C4) = C42.58D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).10(C2xC4)128,244
(C2×Q8).11(C2×C4) = C24.58D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).11(C2xC4)128,245
(C2×Q8).12(C2×C4) = C42.60D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).12(C2xC4)128,247
(C2×Q8).13(C2×C4) = C24.59D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).13(C2xC4)128,248
(C2×Q8).14(C2×C4) = C42.62D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).14(C2xC4)128,250
(C2×Q8).15(C2×C4) = C24.61D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).15(C2xC4)128,252
(C2×Q8).16(C2×C4) = C42.63D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).16(C2xC4)128,253
(C2×Q8).17(C2×C4) = C2×C42.C22φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).17(C2xC4)128,254
(C2×Q8).18(C2×C4) = C42.66D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).18(C2xC4)128,256
(C2×Q8).19(C2×C4) = C42.405D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).19(C2xC4)128,257
(C2×Q8).20(C2×C4) = C42.407D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).20(C2xC4)128,259
(C2×Q8).21(C2×C4) = C42.376D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).21(C2xC4)128,261
(C2×Q8).22(C2×C4) = C42.67D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).22(C2xC4)128,262
(C2×Q8).23(C2×C4) = C42.69D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).23(C2xC4)128,264
(C2×Q8).24(C2×C4) = C42.70D4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).24(C2xC4)128,265
(C2×Q8).25(C2×C4) = C42.72D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).25(C2xC4)128,267
(C2×Q8).26(C2×C4) = C42.73D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).26(C2xC4)128,268
(C2×Q8).27(C2×C4) = C2×C4.6Q16φ: C2×C4/C2C4 ⊆ Out C2×Q8128(C2xQ8).27(C2xC4)128,273
(C2×Q8).28(C2×C4) = C42.410D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).28(C2xC4)128,274
(C2×Q8).29(C2×C4) = C42.411D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).29(C2xC4)128,275
(C2×Q8).30(C2×C4) = C42.415D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).30(C2xC4)128,280
(C2×Q8).31(C2×C4) = C42.79D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).31(C2xC4)128,282
(C2×Q8).32(C2×C4) = C42.80D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).32(C2xC4)128,283
(C2×Q8).33(C2×C4) = C42.418D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).33(C2xC4)128,286
(C2×Q8).34(C2×C4) = C42.85D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).34(C2xC4)128,290
(C2×Q8).35(C2×C4) = C42.86D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).35(C2xC4)128,291
(C2×Q8).36(C2×C4) = C42.87D4φ: C2×C4/C2C4 ⊆ Out C2×Q864(C2xQ8).36(C2xC4)128,292
(C2×Q8).37(C2×C4) = C4⋊Q8⋊C4φ: C2×C4/C2C4 ⊆ Out C2×Q8328-(C2xQ8).37(C2xC4)128,861
(C2×Q8).38(C2×C4) = C2×C42.3C4φ: C2×C4/C2C4 ⊆ Out C2×Q832(C2xQ8).38(C2xC4)128,863
(C2×Q8).39(C2×C4) = (C2×D4).135D4φ: C2×C4/C2C4 ⊆ Out C2×Q8164(C2xQ8).39(C2xC4)128,864
(C2×Q8).40(C2×C4) = (C2×D4).137D4φ: C2×C4/C2C4 ⊆ Out C2×Q8328-(C2xQ8).40(C2xC4)128,867
(C2×Q8).41(C2×C4) = (C2×Q8).Q8φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).41(C2xC4)128,126
(C2×Q8).42(C2×C4) = (C22×C8)⋊C4φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).42(C2xC4)128,127
(C2×Q8).43(C2×C4) = C42.46D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).43(C2xC4)128,213
(C2×Q8).44(C2×C4) = C42.373D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).44(C2xC4)128,214
(C2×Q8).45(C2×C4) = C42.47D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).45(C2xC4)128,215
(C2×Q8).46(C2×C4) = C42.401D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).46(C2xC4)128,217
(C2×Q8).47(C2×C4) = C42.316D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).47(C2xC4)128,225
(C2×Q8).48(C2×C4) = C42.305D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).48(C2xC4)128,226
(C2×Q8).49(C2×C4) = C42.52D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).49(C2xC4)128,227
(C2×Q8).50(C2×C4) = C42.54D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).50(C2xC4)128,229
(C2×Q8).51(C2×C4) = C812SD16φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).51(C2xC4)128,314
(C2×Q8).52(C2×C4) = D4.M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).52(C2xC4)128,317
(C2×Q8).53(C2×C4) = C89SD16φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).53(C2xC4)128,322
(C2×Q8).54(C2×C4) = C86Q16φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).54(C2xC4)128,323
(C2×Q8).55(C2×C4) = C8⋊M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).55(C2xC4)128,324
(C2×Q8).56(C2×C4) = C8.M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).56(C2xC4)128,325
(C2×Q8).57(C2×C4) = 2- 1+42C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).57(C2xC4)128,525
(C2×Q8).58(C2×C4) = 2+ 1+44C4φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).58(C2xC4)128,526
(C2×Q8).59(C2×C4) = C4.10D42C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).59(C2xC4)128,589
(C2×Q8).60(C2×C4) = M4(2).40D4φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).60(C2xC4)128,590
(C2×Q8).61(C2×C4) = C24.72D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).61(C2xC4)128,603
(C2×Q8).62(C2×C4) = C24.73D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).62(C2xC4)128,605
(C2×Q8).63(C2×C4) = M4(2).43D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).63(C2xC4)128,608
(C2×Q8).64(C2×C4) = (C2×C4)⋊9Q16φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).64(C2xC4)128,610
(C2×Q8).65(C2×C4) = M4(2).44D4φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).65(C2xC4)128,613
(C2×Q8).66(C2×C4) = M4(2)⋊19D4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8).66(C2xC4)128,616
(C2×Q8).67(C2×C4) = C4⋊Q815C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).67(C2xC4)128,618
(C2×Q8).68(C2×C4) = C4.4D413C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).68(C2xC4)128,620
(C2×Q8).69(C2×C4) = C24.135D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).69(C2xC4)128,624
(C2×Q8).70(C2×C4) = C24.75D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).70(C2xC4)128,626
(C2×Q8).71(C2×C4) = C427D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).71(C2xC4)128,629
(C2×Q8).72(C2×C4) = M4(2).46D4φ: C2×C4/C2C22 ⊆ Out C2×Q8328-(C2xQ8).72(C2xC4)128,634
(C2×Q8).73(C2×C4) = M4(2).47D4φ: C2×C4/C2C22 ⊆ Out C2×Q8168+(C2xQ8).73(C2xC4)128,635
(C2×Q8).74(C2×C4) = C42.6D4φ: C2×C4/C2C22 ⊆ Out C2×Q8328-(C2xQ8).74(C2xC4)128,637
(C2×Q8).75(C2×C4) = M4(2).49D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).75(C2xC4)128,640
(C2×Q8).76(C2×C4) = C4.(C4×D4)φ: C2×C4/C2C22 ⊆ Out C2×Q8328-(C2xQ8).76(C2xC4)128,641
(C2×Q8).77(C2×C4) = (C2×C8)⋊4D4φ: C2×C4/C2C22 ⊆ Out C2×Q8168+(C2xQ8).77(C2xC4)128,642
(C2×Q8).78(C2×C4) = C42.7D4φ: C2×C4/C2C22 ⊆ Out C2×Q8328-(C2xQ8).78(C2xC4)128,644
(C2×Q8).79(C2×C4) = C4.68(C4×D4)φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).79(C2xC4)128,659
(C2×Q8).80(C2×C4) = C2.(C4×Q16)φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).80(C2xC4)128,660
(C2×Q8).81(C2×C4) = M4(2).24D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).81(C2xC4)128,661
(C2×Q8).82(C2×C4) = C4.10D43C4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).82(C2xC4)128,662
(C2×Q8).83(C2×C4) = C42.427D4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8).83(C2xC4)128,664
(C2×Q8).84(C2×C4) = C2.(C88D4)φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).84(C2xC4)128,665
(C2×Q8).85(C2×C4) = C2.(C8⋊D4)φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).85(C2xC4)128,667
(C2×Q8).86(C2×C4) = C42.428D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).86(C2xC4)128,669
(C2×Q8).87(C2×C4) = C42.107D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).87(C2xC4)128,670
(C2×Q8).88(C2×C4) = C42.431D4φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).88(C2xC4)128,688
(C2×Q8).89(C2×C4) = C42.433D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).89(C2xC4)128,690
(C2×Q8).90(C2×C4) = C42.110D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).90(C2xC4)128,691
(C2×Q8).91(C2×C4) = C42.111D4φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).91(C2xC4)128,692
(C2×Q8).92(C2×C4) = C43⋊C2φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).92(C2xC4)128,694
(C2×Q8).93(C2×C4) = C428D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).93(C2xC4)128,695
(C2×Q8).94(C2×C4) = (C2×C4)⋊9SD16φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).94(C2xC4)128,700
(C2×Q8).95(C2×C4) = (C2×C4)⋊6Q16φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).95(C2xC4)128,701
(C2×Q8).96(C2×C4) = (C2×Q16)⋊10C4φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).96(C2xC4)128,703
(C2×Q8).97(C2×C4) = C8⋊(C22⋊C4)φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).97(C2xC4)128,705
(C2×Q8).98(C2×C4) = C42.326D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).98(C2xC4)128,706
(C2×Q8).99(C2×C4) = C42.116D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).99(C2xC4)128,707
(C2×Q8).100(C2×C4) = M4(2).30D4φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).100(C2xC4)128,708
(C2×Q8).101(C2×C4) = M4(2).31D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).101(C2xC4)128,709
(C2×Q8).102(C2×C4) = M4(2).33D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).102(C2xC4)128,711
(C2×Q8).103(C2×C4) = M4(2)⋊13D4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).103(C2xC4)128,712
(C2×Q8).104(C2×C4) = C42.117D4φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).104(C2xC4)128,713
(C2×Q8).105(C2×C4) = C42.119D4φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).105(C2xC4)128,715
(C2×Q8).106(C2×C4) = C4⋊Q829C4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8).106(C2xC4)128,858
(C2×Q8).107(C2×C4) = C4.4D4⋊C4φ: C2×C4/C2C22 ⊆ Out C2×Q8168+(C2xQ8).107(C2xC4)128,860
(C2×Q8).108(C2×C4) = C2×C42.C4φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).108(C2xC4)128,862
(C2×Q8).109(C2×C4) = C4⋊Q8.C4φ: C2×C4/C2C22 ⊆ Out C2×Q8328-(C2xQ8).109(C2xC4)128,865
(C2×Q8).110(C2×C4) = C424Q8φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).110(C2xC4)128,1063
(C2×Q8).111(C2×C4) = C23.214C24φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).111(C2xC4)128,1064
(C2×Q8).112(C2×C4) = C23.251C24φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).112(C2xC4)128,1101
(C2×Q8).113(C2×C4) = C24.227C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).113(C2xC4)128,1110
(C2×Q8).114(C2×C4) = C23.263C24φ: C2×C4/C2C22 ⊆ Out C2×Q8128(C2xQ8).114(C2xC4)128,1113
(C2×Q8).115(C2×C4) = C42.279C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).115(C2xC4)128,1682
(C2×Q8).116(C2×C4) = M4(2).51D4φ: C2×C4/C2C22 ⊆ Out C2×Q8164(C2xQ8).116(C2xC4)128,1688
(C2×Q8).117(C2×C4) = M4(2)○D8φ: C2×C4/C2C22 ⊆ Out C2×Q8324(C2xQ8).117(C2xC4)128,1689
(C2×Q8).118(C2×C4) = C42.287C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).118(C2xC4)128,1693
(C2×Q8).119(C2×C4) = M4(2)⋊9Q8φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).119(C2xC4)128,1694
(C2×Q8).120(C2×C4) = C42.292C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).120(C2xC4)128,1699
(C2×Q8).121(C2×C4) = C42.293C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).121(C2xC4)128,1700
(C2×Q8).122(C2×C4) = C42.297C23φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).122(C2xC4)128,1708
(C2×Q8).123(C2×C4) = C42.298C23φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).123(C2xC4)128,1709
(C2×Q8).124(C2×C4) = C42.299C23φ: C2×C4/C2C22 ⊆ Out C2×Q832(C2xQ8).124(C2xC4)128,1710
(C2×Q8).125(C2×C4) = C42.694C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).125(C2xC4)128,1711
(C2×Q8).126(C2×C4) = C42.300C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).126(C2xC4)128,1712
(C2×Q8).127(C2×C4) = C42.301C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).127(C2xC4)128,1713
(C2×Q8).128(C2×C4) = C42.305C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).128(C2xC4)128,1719
(C2×Q8).129(C2×C4) = C42.307C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).129(C2xC4)128,1724
(C2×Q8).130(C2×C4) = C42.310C23φ: C2×C4/C2C22 ⊆ Out C2×Q864(C2xQ8).130(C2xC4)128,1727
(C2×Q8).131(C2×C4) = C8×SD16φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).131(C2xC4)128,308
(C2×Q8).132(C2×C4) = C8×Q16φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).132(C2xC4)128,309
(C2×Q8).133(C2×C4) = SD16⋊C8φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).133(C2xC4)128,310
(C2×Q8).134(C2×C4) = Q165C8φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).134(C2xC4)128,311
(C2×Q8).135(C2×C4) = C815SD16φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).135(C2xC4)128,315
(C2×Q8).136(C2×C4) = C89Q16φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).136(C2xC4)128,316
(C2×Q8).137(C2×C4) = Q8.M4(2)φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).137(C2xC4)128,319
(C2×Q8).138(C2×C4) = Q82M4(2)φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).138(C2xC4)128,320
(C2×Q8).139(C2×C4) = C4×C4.10D4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).139(C2xC4)128,488
(C2×Q8).140(C2×C4) = C23.5C42φ: C2×C4/C4C2 ⊆ Out C2×Q8324(C2xQ8).140(C2xC4)128,489
(C2×Q8).141(C2×C4) = Q8.C42φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).141(C2xC4)128,496
(C2×Q8).142(C2×C4) = D4.3C42φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).142(C2xC4)128,497
(C2×Q8).143(C2×C4) = Q8⋊(C4⋊C4)φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).143(C2xC4)128,595
(C2×Q8).144(C2×C4) = Q8⋊C4⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).144(C2xC4)128,597
(C2×Q8).145(C2×C4) = M4(2).42D4φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).145(C2xC4)128,598
(C2×Q8).146(C2×C4) = (C2×SD16)⋊15C4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).146(C2xC4)128,612
(C2×Q8).147(C2×C4) = C4×C4⋊Q8φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).147(C2xC4)128,1039
(C2×Q8).148(C2×C4) = C42.159D4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).148(C2xC4)128,1055
(C2×Q8).149(C2×C4) = C42.161D4φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).149(C2xC4)128,1059
(C2×Q8).150(C2×C4) = C23.244C24φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).150(C2xC4)128,1094
(C2×Q8).151(C2×C4) = C23.247C24φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).151(C2xC4)128,1097
(C2×Q8).152(C2×C4) = C42.264C23φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).152(C2xC4)128,1661
(C2×Q8).153(C2×C4) = C42.265C23φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).153(C2xC4)128,1662
(C2×Q8).154(C2×C4) = C42.681C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).154(C2xC4)128,1663
(C2×Q8).155(C2×C4) = C42.266C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).155(C2xC4)128,1664
(C2×Q8).156(C2×C4) = M4(2)⋊22D4φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).156(C2xC4)128,1665
(C2×Q8).157(C2×C4) = M4(2)⋊23D4φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).157(C2xC4)128,1667
(C2×Q8).158(C2×C4) = C2×C4×Q16φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).158(C2xC4)128,1670
(C2×Q8).159(C2×C4) = C2×Q16⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Q8128(C2xQ8).159(C2xC4)128,1673
(C2×Q8).160(C2×C4) = C2×C8○D8φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).160(C2xC4)128,1685
(C2×Q8).161(C2×C4) = C2×C8.26D4φ: C2×C4/C4C2 ⊆ Out C2×Q832(C2xQ8).161(C2xC4)128,1686
(C2×Q8).162(C2×C4) = C42.283C23φ: C2×C4/C4C2 ⊆ Out C2×Q8324(C2xQ8).162(C2xC4)128,1687
(C2×Q8).163(C2×C4) = C42.286C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).163(C2xC4)128,1692
(C2×Q8).164(C2×C4) = C42.291C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).164(C2xC4)128,1698
(C2×Q8).165(C2×C4) = C42.294C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).165(C2xC4)128,1701
(C2×Q8).166(C2×C4) = C42.696C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).166(C2xC4)128,1717
(C2×Q8).167(C2×C4) = C42.304C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).167(C2xC4)128,1718
(C2×Q8).168(C2×C4) = C42.308C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).168(C2xC4)128,1725
(C2×Q8).169(C2×C4) = C42.309C23φ: C2×C4/C4C2 ⊆ Out C2×Q864(C2xQ8).169(C2xC4)128,1726
(C2×Q8).170(C2×C4) = C4.22C25φ: C2×C4/C4C2 ⊆ Out C2×Q8324(C2xQ8).170(C2xC4)128,2305
(C2×Q8).171(C2×C4) = C2×Q8⋊C8φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).171(C2xC4)128,207
(C2×Q8).172(C2×C4) = C42.455D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).172(C2xC4)128,208
(C2×Q8).173(C2×C4) = C42.397D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).173(C2xC4)128,209
(C2×Q8).174(C2×C4) = C42.399D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).174(C2xC4)128,211
(C2×Q8).175(C2×C4) = Q8⋊M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).175(C2xC4)128,219
(C2×Q8).176(C2×C4) = C42.374D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).176(C2xC4)128,220
(C2×Q8).177(C2×C4) = D44M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).177(C2xC4)128,221
(C2×Q8).178(C2×C4) = Q85M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).178(C2xC4)128,223
(C2×Q8).179(C2×C4) = C4×C4≀C2φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).179(C2xC4)128,490
(C2×Q8).180(C2×C4) = D4.C42φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).180(C2xC4)128,491
(C2×Q8).181(C2×C4) = C4×Q8⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).181(C2xC4)128,493
(C2×Q8).182(C2×C4) = Q8⋊C42φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).182(C2xC4)128,495
(C2×Q8).183(C2×C4) = C24.155D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).183(C2xC4)128,519
(C2×Q8).184(C2×C4) = C24.65D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).184(C2xC4)128,520
(C2×Q8).185(C2×C4) = C24.66D4φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).185(C2xC4)128,521
(C2×Q8).186(C2×C4) = C4○D4.D4φ: C2×C4/C22C2 ⊆ Out C2×Q8168+(C2xQ8).186(C2xC4)128,527
(C2×Q8).187(C2×C4) = (C22×Q8)⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Q8328-(C2xQ8).187(C2xC4)128,528
(C2×Q8).188(C2×C4) = C42.99D4φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).188(C2xC4)128,535
(C2×Q8).189(C2×C4) = C42.101D4φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).189(C2xC4)128,537
(C2×Q8).190(C2×C4) = C42.102D4φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).190(C2xC4)128,538
(C2×Q8).191(C2×C4) = C4214Q8φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).191(C2xC4)128,1027
(C2×Q8).192(C2×C4) = C23.192C24φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).192(C2xC4)128,1042
(C2×Q8).193(C2×C4) = C23.202C24φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).193(C2xC4)128,1052
(C2×Q8).194(C2×C4) = Q8×C22⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).194(C2xC4)128,1072
(C2×Q8).195(C2×C4) = C23.237C24φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).195(C2xC4)128,1087
(C2×Q8).196(C2×C4) = C23.238C24φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).196(C2xC4)128,1088
(C2×Q8).197(C2×C4) = C2×(C22×C8)⋊C2φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).197(C2xC4)128,1610
(C2×Q8).198(C2×C4) = C24.73(C2×C4)φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).198(C2xC4)128,1611
(C2×Q8).199(C2×C4) = C23.4C24φ: C2×C4/C22C2 ⊆ Out C2×Q8328-(C2xQ8).199(C2xC4)128,1616
(C2×Q8).200(C2×C4) = C22×C4.10D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).200(C2xC4)128,1618
(C2×Q8).201(C2×C4) = C2×M4(2).8C22φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).201(C2xC4)128,1619
(C2×Q8).202(C2×C4) = M4(2).24C23φ: C2×C4/C22C2 ⊆ Out C2×Q8168+(C2xQ8).202(C2xC4)128,1620
(C2×Q8).203(C2×C4) = M4(2).25C23φ: C2×C4/C22C2 ⊆ Out C2×Q8328-(C2xQ8).203(C2xC4)128,1621
(C2×Q8).204(C2×C4) = C2×C23.24D4φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).204(C2xC4)128,1624
(C2×Q8).205(C2×C4) = C42.260C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).205(C2xC4)128,1654
(C2×Q8).206(C2×C4) = C42.261C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).206(C2xC4)128,1655
(C2×Q8).207(C2×C4) = C42.678C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).207(C2xC4)128,1657
(C2×Q8).208(C2×C4) = C2×C84Q8φ: C2×C4/C22C2 ⊆ Out C2×Q8128(C2xQ8).208(C2xC4)128,1691
(C2×Q8).209(C2×C4) = C42.290C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).209(C2xC4)128,1697
(C2×Q8).210(C2×C4) = D46M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).210(C2xC4)128,1702
(C2×Q8).211(C2×C4) = C42.302C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).211(C2xC4)128,1715
(C2×Q8).212(C2×C4) = Q8.4M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).212(C2xC4)128,1716
(C2×Q8).213(C2×C4) = C42.698C23φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).213(C2xC4)128,1721
(C2×Q8).214(C2×C4) = D48M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q864(C2xQ8).214(C2xC4)128,1722
(C2×Q8).215(C2×C4) = C2×Q8○M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Q832(C2xQ8).215(C2xC4)128,2304
(C2×Q8).216(C2×C4) = Q8×C42φ: trivial image128(C2xQ8).216(C2xC4)128,1004
(C2×Q8).217(C2×C4) = Q84C42φ: trivial image128(C2xQ8).217(C2xC4)128,1008
(C2×Q8).218(C2×C4) = C23.223C24φ: trivial image64(C2xQ8).218(C2xC4)128,1073
(C2×Q8).219(C2×C4) = Q8×C4⋊C4φ: trivial image128(C2xQ8).219(C2xC4)128,1082
(C2×Q8).220(C2×C4) = C23.233C24φ: trivial image128(C2xQ8).220(C2xC4)128,1083
(C2×Q8).221(C2×C4) = C4×C8○D4φ: trivial image64(C2xQ8).221(C2xC4)128,1606
(C2×Q8).222(C2×C4) = D4.5C42φ: trivial image64(C2xQ8).222(C2xC4)128,1607
(C2×Q8).223(C2×C4) = D4○(C22⋊C8)φ: trivial image32(C2xQ8).223(C2xC4)128,1612
(C2×Q8).224(C2×C4) = C42.674C23φ: trivial image64(C2xQ8).224(C2xC4)128,1638
(C2×Q8).225(C2×C4) = Q8×C2×C8φ: trivial image128(C2xQ8).225(C2xC4)128,1690
(C2×Q8).226(C2×C4) = Q8×M4(2)φ: trivial image64(C2xQ8).226(C2xC4)128,1695
(C2×Q8).227(C2×C4) = C8×C4○D4φ: trivial image64(C2xQ8).227(C2xC4)128,1696
(C2×Q8).228(C2×C4) = Q86M4(2)φ: trivial image64(C2xQ8).228(C2xC4)128,1703
(C2×Q8).229(C2×C4) = C42.695C23φ: trivial image64(C2xQ8).229(C2xC4)128,1714
(C2×Q8).230(C2×C4) = C42.697C23φ: trivial image64(C2xQ8).230(C2xC4)128,1720
(C2×Q8).231(C2×C4) = Q87M4(2)φ: trivial image64(C2xQ8).231(C2xC4)128,1723
(C2×Q8).232(C2×C4) = C22×C8○D4φ: trivial image64(C2xQ8).232(C2xC4)128,2303

׿
×
𝔽