extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).1D4 = C42.2D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).1D4 | 128,135 |
(C2×Q8).2D4 = C42.4D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).2D4 | 128,137 |
(C2×Q8).3D4 = C8⋊C4⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).3D4 | 128,138 |
(C2×Q8).4D4 = (C2×D4).D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).4D4 | 128,139 |
(C2×Q8).5D4 = (C4×C8).C4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).5D4 | 128,142 |
(C2×Q8).6D4 = (C2×Q8).D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 4- | (C2xQ8).6D4 | 128,143 |
(C2×Q8).7D4 = C8⋊C4.C4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).7D4 | 128,145 |
(C2×Q8).8D4 = (C4×C8)⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).8D4 | 128,146 |
(C2×Q8).9D4 = C4⋊C4.D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).9D4 | 128,329 |
(C2×Q8).10D4 = (C2×C4)⋊SD16 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).10D4 | 128,331 |
(C2×Q8).11D4 = C23⋊Q16 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).11D4 | 128,334 |
(C2×Q8).12D4 = C4⋊C4.6D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).12D4 | 128,335 |
(C2×Q8).13D4 = (C2×C4)⋊Q16 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).13D4 | 128,337 |
(C2×Q8).14D4 = C24.12D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).14D4 | 128,338 |
(C2×Q8).15D4 = C24.14D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).15D4 | 128,340 |
(C2×Q8).16D4 = C4⋊C4.12D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).16D4 | 128,341 |
(C2×Q8).17D4 = (C2×C4).SD16 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).17D4 | 128,343 |
(C2×Q8).18D4 = C24.15D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).18D4 | 128,344 |
(C2×Q8).19D4 = C24.17D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).19D4 | 128,346 |
(C2×Q8).20D4 = C4⋊C4.18D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).20D4 | 128,347 |
(C2×Q8).21D4 = C4⋊C4.20D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).21D4 | 128,349 |
(C2×Q8).22D4 = C24.18D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).22D4 | 128,350 |
(C2×Q8).23D4 = C42.185C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).23D4 | 128,356 |
(C2×Q8).24D4 = C42.195C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).24D4 | 128,366 |
(C2×Q8).25D4 = D4⋊3Q16 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).25D4 | 128,376 |
(C2×Q8).26D4 = C42.207C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).26D4 | 128,378 |
(C2×Q8).27D4 = C42.C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).27D4 | 128,387 |
(C2×Q8).28D4 = C42.2C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).28D4 | 128,388 |
(C2×Q8).29D4 = C42.3C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).29D4 | 128,389 |
(C2×Q8).30D4 = C42.5C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | | (C2xQ8).30D4 | 128,391 |
(C2×Q8).31D4 = C42.6C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).31D4 | 128,392 |
(C2×Q8).32D4 = C42.7C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).32D4 | 128,393 |
(C2×Q8).33D4 = C42.8C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).33D4 | 128,394 |
(C2×Q8).34D4 = C42.10C23 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 64 | | (C2xQ8).34D4 | 128,396 |
(C2×Q8).35D4 = C42.14D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).35D4 | 128,933 |
(C2×Q8).36D4 = C42.16D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).36D4 | 128,935 |
(C2×Q8).37D4 = C42.17D4 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).37D4 | 128,936 |
(C2×Q8).38D4 = Q8≀C2 | φ: D4/C1 → D4 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).38D4 | 128,937 |
(C2×Q8).39D4 = C23.3C42 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).39D4 | 128,124 |
(C2×Q8).40D4 = (C2×Q8).Q8 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).40D4 | 128,126 |
(C2×Q8).41D4 = C42.181C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).41D4 | 128,352 |
(C2×Q8).42D4 = D4⋊SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).42D4 | 128,354 |
(C2×Q8).43D4 = Q8⋊6SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).43D4 | 128,358 |
(C2×Q8).44D4 = C42.189C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).44D4 | 128,360 |
(C2×Q8).45D4 = C42.191C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).45D4 | 128,362 |
(C2×Q8).46D4 = D4⋊Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).46D4 | 128,364 |
(C2×Q8).47D4 = Q8.Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).47D4 | 128,368 |
(C2×Q8).48D4 = C42.199C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).48D4 | 128,370 |
(C2×Q8).49D4 = C42.201C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).49D4 | 128,372 |
(C2×Q8).50D4 = D4.5SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).50D4 | 128,375 |
(C2×Q8).51D4 = Q8⋊4Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).51D4 | 128,380 |
(C2×Q8).52D4 = C42.211C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).52D4 | 128,382 |
(C2×Q8).53D4 = C42.213C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).53D4 | 128,384 |
(C2×Q8).54D4 = Q8.SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).54D4 | 128,385 |
(C2×Q8).55D4 = C8⋊SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).55D4 | 128,418 |
(C2×Q8).56D4 = C8⋊2SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).56D4 | 128,420 |
(C2×Q8).57D4 = C8.SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).57D4 | 128,422 |
(C2×Q8).58D4 = C8⋊Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).58D4 | 128,424 |
(C2×Q8).59D4 = C8⋊2Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).59D4 | 128,426 |
(C2×Q8).60D4 = C8.3Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).60D4 | 128,428 |
(C2×Q8).61D4 = C42.249C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).61D4 | 128,430 |
(C2×Q8).62D4 = C42.251C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).62D4 | 128,432 |
(C2×Q8).63D4 = C42.253C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).63D4 | 128,434 |
(C2×Q8).64D4 = C42.255C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).64D4 | 128,436 |
(C2×Q8).65D4 = 2+ 1+4.2C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).65D4 | 128,523 |
(C2×Q8).66D4 = 2- 1+4⋊2C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).66D4 | 128,525 |
(C2×Q8).67D4 = 2+ 1+4⋊4C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).67D4 | 128,526 |
(C2×Q8).68D4 = (C22×Q8)⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).68D4 | 128,528 |
(C2×Q8).69D4 = M4(2).44D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).69D4 | 128,613 |
(C2×Q8).70D4 = C4⋊Q8⋊15C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).70D4 | 128,618 |
(C2×Q8).71D4 = C4.4D4⋊13C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).71D4 | 128,620 |
(C2×Q8).72D4 = (C2×C8)⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).72D4 | 128,623 |
(C2×Q8).73D4 = C42.6D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).73D4 | 128,637 |
(C2×Q8).74D4 = C42.7D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).74D4 | 128,644 |
(C2×Q8).75D4 = M4(2)⋊21D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).75D4 | 128,646 |
(C2×Q8).76D4 = M4(2).50D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).76D4 | 128,647 |
(C2×Q8).77D4 = C23⋊2Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).77D4 | 128,733 |
(C2×Q8).78D4 = C42.129D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).78D4 | 128,735 |
(C2×Q8).79D4 = C42.130D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).79D4 | 128,737 |
(C2×Q8).80D4 = M4(2)⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).80D4 | 128,738 |
(C2×Q8).81D4 = M4(2).D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).81D4 | 128,741 |
(C2×Q8).82D4 = (C22×D8).C2 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).82D4 | 128,744 |
(C2×Q8).83D4 = (C2×C4)⋊3SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).83D4 | 128,745 |
(C2×Q8).84D4 = (C2×C8).41D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).84D4 | 128,747 |
(C2×Q8).85D4 = (C2×C4)⋊2Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).85D4 | 128,748 |
(C2×Q8).86D4 = (C2×C8).2D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).86D4 | 128,749 |
(C2×Q8).87D4 = M4(2).4D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).87D4 | 128,750 |
(C2×Q8).88D4 = M4(2).5D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).88D4 | 128,751 |
(C2×Q8).89D4 = M4(2).6D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).89D4 | 128,752 |
(C2×Q8).90D4 = C24.85D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).90D4 | 128,767 |
(C2×Q8).91D4 = C24.86D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).91D4 | 128,768 |
(C2×Q8).92D4 = M4(2)⋊6D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).92D4 | 128,769 |
(C2×Q8).93D4 = M4(2).7D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).93D4 | 128,770 |
(C2×Q8).94D4 = C42⋊11D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).94D4 | 128,771 |
(C2×Q8).95D4 = C42⋊12D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).95D4 | 128,772 |
(C2×Q8).96D4 = C4⋊C4.94D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).96D4 | 128,774 |
(C2×Q8).97D4 = C4⋊C4.95D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).97D4 | 128,775 |
(C2×Q8).98D4 = C4⋊C4.97D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).98D4 | 128,778 |
(C2×Q8).99D4 = C4⋊C4.98D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).99D4 | 128,779 |
(C2×Q8).100D4 = M4(2).8D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).100D4 | 128,780 |
(C2×Q8).101D4 = M4(2).9D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).101D4 | 128,781 |
(C2×Q8).102D4 = C42.131D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).102D4 | 128,782 |
(C2×Q8).103D4 = M4(2).10D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).103D4 | 128,783 |
(C2×Q8).104D4 = M4(2).11D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).104D4 | 128,784 |
(C2×Q8).105D4 = C22⋊C4.7D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).105D4 | 128,785 |
(C2×Q8).106D4 = (C2×C4)⋊5SD16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).106D4 | 128,787 |
(C2×Q8).107D4 = (C2×C4)⋊3Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).107D4 | 128,788 |
(C2×Q8).108D4 = (C2×C4).19Q16 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).108D4 | 128,804 |
(C2×Q8).109D4 = (C2×Q8).109D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).109D4 | 128,806 |
(C2×Q8).110D4 = (C2×C8).55D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).110D4 | 128,810 |
(C2×Q8).111D4 = (C2×C8).165D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).111D4 | 128,811 |
(C2×Q8).112D4 = C42.9D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).112D4 | 128,812 |
(C2×Q8).113D4 = (C2×C8).6D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).113D4 | 128,814 |
(C2×Q8).114D4 = C4○C2≀C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).114D4 | 128,852 |
(C2×Q8).115D4 = C2≀C4⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).115D4 | 128,854 |
(C2×Q8).116D4 = C23.(C2×D4) | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).116D4 | 128,855 |
(C2×Q8).117D4 = C2×C42.C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).117D4 | 128,862 |
(C2×Q8).118D4 = C2×C42.3C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).118D4 | 128,863 |
(C2×Q8).119D4 = C4⋊Q8.C4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).119D4 | 128,865 |
(C2×Q8).120D4 = C24.421C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).120D4 | 128,1461 |
(C2×Q8).121D4 = C23.631C24 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).121D4 | 128,1463 |
(C2×Q8).122D4 = C23.634C24 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).122D4 | 128,1466 |
(C2×Q8).123D4 = Q8.(C2×D4) | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).123D4 | 128,1743 |
(C2×Q8).124D4 = C42.13C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).124D4 | 128,1754 |
(C2×Q8).125D4 = C23.10C24 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).125D4 | 128,1760 |
(C2×Q8).126D4 = C42.17C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).126D4 | 128,1776 |
(C2×Q8).127D4 = M4(2).37D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).127D4 | 128,1800 |
(C2×Q8).128D4 = M4(2).38D4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).128D4 | 128,1801 |
(C2×Q8).129D4 = C4.2+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).129D4 | 128,1930 |
(C2×Q8).130D4 = C4.142+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).130D4 | 128,1931 |
(C2×Q8).131D4 = C4.152+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).131D4 | 128,1932 |
(C2×Q8).132D4 = C4.162+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).132D4 | 128,1933 |
(C2×Q8).133D4 = C4.172+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).133D4 | 128,1934 |
(C2×Q8).134D4 = C4.182+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).134D4 | 128,1935 |
(C2×Q8).135D4 = C4.192+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).135D4 | 128,1936 |
(C2×Q8).136D4 = C42.511C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).136D4 | 128,2102 |
(C2×Q8).137D4 = C42.512C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).137D4 | 128,2103 |
(C2×Q8).138D4 = C42.517C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).138D4 | 128,2108 |
(C2×Q8).139D4 = C42.518C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).139D4 | 128,2109 |
(C2×Q8).140D4 = SD16⋊3Q8 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).140D4 | 128,2120 |
(C2×Q8).141D4 = D8⋊5Q8 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).141D4 | 128,2121 |
(C2×Q8).142D4 = Q16⋊5Q8 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).142D4 | 128,2122 |
(C2×Q8).143D4 = C42.531C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).143D4 | 128,2133 |
(C2×Q8).144D4 = C42.532C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).144D4 | 128,2134 |
(C2×Q8).145D4 = C42.533C23 | φ: D4/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).145D4 | 128,2135 |
(C2×Q8).146D4 = C8⋊14SD16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).146D4 | 128,398 |
(C2×Q8).147D4 = C8⋊13SD16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).147D4 | 128,400 |
(C2×Q8).148D4 = Q8⋊1Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).148D4 | 128,402 |
(C2×Q8).149D4 = C8⋊8Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).149D4 | 128,404 |
(C2×Q8).150D4 = C8⋊7Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).150D4 | 128,406 |
(C2×Q8).151D4 = Q8.1Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).151D4 | 128,408 |
(C2×Q8).152D4 = Q8.2SD16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).152D4 | 128,410 |
(C2×Q8).153D4 = Q8.3SD16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).153D4 | 128,412 |
(C2×Q8).154D4 = Q8.2D8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).154D4 | 128,414 |
(C2×Q8).155D4 = Q8.2Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).155D4 | 128,416 |
(C2×Q8).156D4 = C42.97D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).156D4 | 128,533 |
(C2×Q8).157D4 = C42.99D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).157D4 | 128,535 |
(C2×Q8).158D4 = C42.101D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).158D4 | 128,537 |
(C2×Q8).159D4 = (C2×C8).103D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).159D4 | 128,545 |
(C2×Q8).160D4 = C4○D4.4Q8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).160D4 | 128,547 |
(C2×Q8).161D4 = C4○D4.5Q8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).161D4 | 128,548 |
(C2×Q8).162D4 = (C2×C4)⋊9Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).162D4 | 128,610 |
(C2×Q8).163D4 = (C2×SD16)⋊15C4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).163D4 | 128,612 |
(C2×Q8).164D4 = M4(2).48D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).164D4 | 128,639 |
(C2×Q8).165D4 = M4(2).49D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).165D4 | 128,640 |
(C2×Q8).166D4 = C23.329C24 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).166D4 | 128,1161 |
(C2×Q8).167D4 = C42.168D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).167D4 | 128,1277 |
(C2×Q8).168D4 = C42.169D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).168D4 | 128,1278 |
(C2×Q8).169D4 = C2×C4⋊2Q16 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).169D4 | 128,1765 |
(C2×Q8).170D4 = C2×Q8.D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).170D4 | 128,1766 |
(C2×Q8).171D4 = (C2×C8)⋊11D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).171D4 | 128,1789 |
(C2×Q8).172D4 = (C2×C8)⋊12D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).172D4 | 128,1790 |
(C2×Q8).173D4 = C8.D4⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).173D4 | 128,1791 |
(C2×Q8).174D4 = (C2×C8)⋊13D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).174D4 | 128,1792 |
(C2×Q8).175D4 = (C2×C8)⋊14D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).175D4 | 128,1793 |
(C2×Q8).176D4 = M4(2)⋊16D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).176D4 | 128,1794 |
(C2×Q8).177D4 = M4(2)⋊17D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).177D4 | 128,1795 |
(C2×Q8).178D4 = C2×D4.3D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).178D4 | 128,1796 |
(C2×Q8).179D4 = C2×D4.4D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).179D4 | 128,1797 |
(C2×Q8).180D4 = C2×D4.5D4 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).180D4 | 128,1798 |
(C2×Q8).181D4 = M4(2).10C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).181D4 | 128,1799 |
(C2×Q8).182D4 = C42.501C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).182D4 | 128,2092 |
(C2×Q8).183D4 = C42.502C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).183D4 | 128,2093 |
(C2×Q8).184D4 = C42.505C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).184D4 | 128,2096 |
(C2×Q8).185D4 = C42.506C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).185D4 | 128,2097 |
(C2×Q8).186D4 = D8⋊6Q8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).186D4 | 128,2112 |
(C2×Q8).187D4 = SD16⋊4Q8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).187D4 | 128,2113 |
(C2×Q8).188D4 = Q16⋊6Q8 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).188D4 | 128,2115 |
(C2×Q8).189D4 = C42.527C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).189D4 | 128,2125 |
(C2×Q8).190D4 = C42.528C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).190D4 | 128,2126 |
(C2×Q8).191D4 = C42.530C23 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).191D4 | 128,2128 |
(C2×Q8).192D4 = C8.C24 | φ: D4/C4 → C2 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).192D4 | 128,2316 |
(C2×Q8).193D4 = Q8⋊D8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).193D4 | 128,353 |
(C2×Q8).194D4 = Q8⋊SD16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).194D4 | 128,355 |
(C2×Q8).195D4 = Q8⋊3D8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).195D4 | 128,359 |
(C2×Q8).196D4 = Q8⋊2SD16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).196D4 | 128,363 |
(C2×Q8).197D4 = Q8⋊Q16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).197D4 | 128,365 |
(C2×Q8).198D4 = D4.3Q16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).198D4 | 128,369 |
(C2×Q8).199D4 = Q8.D8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).199D4 | 128,373 |
(C2×Q8).200D4 = Q8⋊3SD16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).200D4 | 128,374 |
(C2×Q8).201D4 = Q8⋊3Q16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).201D4 | 128,377 |
(C2×Q8).202D4 = D4⋊4Q16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).202D4 | 128,381 |
(C2×Q8).203D4 = Q8⋊4SD16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).203D4 | 128,383 |
(C2×Q8).204D4 = C4.C22≀C2 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).204D4 | 128,516 |
(C2×Q8).205D4 = (C23×C4).C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).205D4 | 128,517 |
(C2×Q8).206D4 = C24.155D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).206D4 | 128,519 |
(C2×Q8).207D4 = C24.65D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).207D4 | 128,520 |
(C2×Q8).208D4 = 2+ 1+4⋊3C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).208D4 | 128,524 |
(C2×Q8).209D4 = C4○D4.D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).209D4 | 128,527 |
(C2×Q8).210D4 = (C2×C42)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).210D4 | 128,559 |
(C2×Q8).211D4 = (C2×Q8).211D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).211D4 | 128,562 |
(C2×Q8).212D4 = C4≀C2⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).212D4 | 128,591 |
(C2×Q8).213D4 = C42⋊9(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).213D4 | 128,592 |
(C2×Q8).214D4 = Q8⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).214D4 | 128,595 |
(C2×Q8).215D4 = Q8⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).215D4 | 128,597 |
(C2×Q8).216D4 = C8.C22⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).216D4 | 128,614 |
(C2×Q8).217D4 = C8⋊C22⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).217D4 | 128,615 |
(C2×Q8).218D4 = C42.426D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).218D4 | 128,638 |
(C2×Q8).219D4 = C23.321C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).219D4 | 128,1153 |
(C2×Q8).220D4 = C23.323C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).220D4 | 128,1155 |
(C2×Q8).221D4 = C24.264C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).221D4 | 128,1164 |
(C2×Q8).222D4 = C23.334C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).222D4 | 128,1166 |
(C2×Q8).223D4 = C23.346C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).223D4 | 128,1178 |
(C2×Q8).224D4 = C23.348C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).224D4 | 128,1180 |
(C2×Q8).225D4 = C23.4C24 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).225D4 | 128,1616 |
(C2×Q8).226D4 = 2- 1+4⋊5C4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).226D4 | 128,1633 |
(C2×Q8).227D4 = C2×C22⋊Q16 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).227D4 | 128,1731 |
(C2×Q8).228D4 = C2×D4.7D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).228D4 | 128,1733 |
(C2×Q8).229D4 = C4○D4⋊D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).229D4 | 128,1740 |
(C2×Q8).230D4 = D4.(C2×D4) | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).230D4 | 128,1741 |
(C2×Q8).231D4 = (C2×D4)⋊21D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).231D4 | 128,1744 |
(C2×Q8).232D4 = C2×D4.9D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).232D4 | 128,1747 |
(C2×Q8).233D4 = C2×D4.8D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).233D4 | 128,1748 |
(C2×Q8).234D4 = C2×D4.10D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).234D4 | 128,1749 |
(C2×Q8).235D4 = M4(2).C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).235D4 | 128,1752 |
(C2×Q8).236D4 = (C2×D4).301D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).236D4 | 128,1828 |
(C2×Q8).237D4 = (C2×D4).302D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).237D4 | 128,1829 |
(C2×Q8).238D4 = (C2×D4).303D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).238D4 | 128,1830 |
(C2×Q8).239D4 = (C2×D4).304D4 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).239D4 | 128,1831 |
(C2×Q8).240D4 = C42.507C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).240D4 | 128,2098 |
(C2×Q8).241D4 = C42.508C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).241D4 | 128,2099 |
(C2×Q8).242D4 = C42.509C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).242D4 | 128,2100 |
(C2×Q8).243D4 = C42.510C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).243D4 | 128,2101 |
(C2×Q8).244D4 = C42.513C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).244D4 | 128,2104 |
(C2×Q8).245D4 = C42.514C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).245D4 | 128,2105 |
(C2×Q8).246D4 = C42.515C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).246D4 | 128,2106 |
(C2×Q8).247D4 = C42.516C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).247D4 | 128,2107 |
(C2×Q8).248D4 = D8⋊4Q8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).248D4 | 128,2116 |
(C2×Q8).249D4 = SD16⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).249D4 | 128,2117 |
(C2×Q8).250D4 = SD16⋊2Q8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).250D4 | 128,2118 |
(C2×Q8).251D4 = Q16⋊4Q8 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).251D4 | 128,2119 |
(C2×Q8).252D4 = C42.72C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).252D4 | 128,2129 |
(C2×Q8).253D4 = C42.73C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).253D4 | 128,2130 |
(C2×Q8).254D4 = C42.74C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).254D4 | 128,2131 |
(C2×Q8).255D4 = C42.75C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).255D4 | 128,2132 |
(C2×Q8).256D4 = D8⋊C23 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).256D4 | 128,2317 |
(C2×Q8).257D4 = C4.C25 | φ: D4/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).257D4 | 128,2318 |
(C2×Q8).258D4 = Q8×C22⋊C4 | φ: trivial image | 64 | | (C2xQ8).258D4 | 128,1072 |
(C2×Q8).259D4 = C23.223C24 | φ: trivial image | 64 | | (C2xQ8).259D4 | 128,1073 |
(C2×Q8).260D4 = Q8×C4⋊C4 | φ: trivial image | 128 | | (C2xQ8).260D4 | 128,1082 |
(C2×Q8).261D4 = C23.233C24 | φ: trivial image | 128 | | (C2xQ8).261D4 | 128,1083 |
(C2×Q8).262D4 = 2+ 1+4⋊5C4 | φ: trivial image | 32 | | (C2xQ8).262D4 | 128,1629 |
(C2×Q8).263D4 = 2- 1+4⋊4C4 | φ: trivial image | 64 | | (C2xQ8).263D4 | 128,1630 |
(C2×Q8).264D4 = C4○D4.7Q8 | φ: trivial image | 64 | | (C2xQ8).264D4 | 128,1644 |
(C2×Q8).265D4 = C4○D4.8Q8 | φ: trivial image | 64 | | (C2xQ8).265D4 | 128,1645 |
(C2×Q8).266D4 = Q8⋊4D8 | φ: trivial image | 64 | | (C2xQ8).266D4 | 128,2090 |
(C2×Q8).267D4 = Q8⋊7SD16 | φ: trivial image | 64 | | (C2xQ8).267D4 | 128,2091 |
(C2×Q8).268D4 = Q8⋊8SD16 | φ: trivial image | 64 | | (C2xQ8).268D4 | 128,2094 |
(C2×Q8).269D4 = Q8⋊5Q16 | φ: trivial image | 128 | | (C2xQ8).269D4 | 128,2095 |
(C2×Q8).270D4 = Q8×D8 | φ: trivial image | 64 | | (C2xQ8).270D4 | 128,2110 |
(C2×Q8).271D4 = Q8×SD16 | φ: trivial image | 64 | | (C2xQ8).271D4 | 128,2111 |
(C2×Q8).272D4 = Q8×Q16 | φ: trivial image | 128 | | (C2xQ8).272D4 | 128,2114 |
(C2×Q8).273D4 = Q8⋊5D8 | φ: trivial image | 64 | | (C2xQ8).273D4 | 128,2123 |
(C2×Q8).274D4 = Q8⋊9SD16 | φ: trivial image | 64 | | (C2xQ8).274D4 | 128,2124 |
(C2×Q8).275D4 = Q8⋊6Q16 | φ: trivial image | 128 | | (C2xQ8).275D4 | 128,2127 |
(C2×Q8).276D4 = C2×D4○D8 | φ: trivial image | 32 | | (C2xQ8).276D4 | 128,2313 |
(C2×Q8).277D4 = C2×D4○SD16 | φ: trivial image | 32 | | (C2xQ8).277D4 | 128,2314 |
(C2×Q8).278D4 = C2×Q8○D8 | φ: trivial image | 64 | | (C2xQ8).278D4 | 128,2315 |