Copied to
clipboard

G = (C4×C8)⋊6C4order 128 = 27

6th semidirect product of C4×C8 and C4 acting faithfully

p-group, metabelian, nilpotent (class 5), monomial

Aliases: (C4×C8)⋊6C4, C4⋊Q82C4, (C2×D4).6D4, C85D4.6C2, C42.16(C2×C4), C42⋊C4.1C2, C41D4.3C22, C2.9(C42⋊C4), C22.19(C23⋊C4), (C2×C4).35(C22⋊C4), SmallGroup(128,141)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — (C4×C8)⋊6C4
C1C2C22C2×C4C2×D4C41D4C85D4 — (C4×C8)⋊6C4
C1C2C22C2×C4C42 — (C4×C8)⋊6C4
C1C2C22C2×C4C41D4 — (C4×C8)⋊6C4
C1C2C2C22C2×C4C41D4 — (C4×C8)⋊6C4

Generators and relations for (C4×C8)⋊6C4
 G = < a,b,c | a4=b8=c4=1, ab=ba, cac-1=ab2, cbc-1=ab3 >

2C2
8C2
8C2
2C4
2C4
2C4
4C22
4C22
8C22
8C4
8C22
16C4
16C4
2C8
2C2×C4
2C23
2C23
2C8
4D4
4C2×C4
4Q8
4Q8
4D4
8D4
8C2×C4
8D4
8C2×C4
2C2×Q8
2C2×C8
4C4⋊C4
4C22⋊C4
4SD16
4SD16
4SD16
4SD16
4C22⋊C4
4C2×D4
2C23⋊C4
2C2×SD16
2C2×SD16
2C23⋊C4

Character table of (C4×C8)⋊6C4

 class 12A2B2C2D4A4B4C4D4E4F4G4H8A8B8C8D
 size 1128844416161616164444
ρ111111111111111111    trivial
ρ21111111111-1-1-1-1-1-1-1    linear of order 2
ρ311111111-1-11-11-1-1-1-1    linear of order 2
ρ411111111-1-1-11-11111    linear of order 2
ρ5111-1-1111-ii-i-1i1111    linear of order 4
ρ6111-1-1111-iii1-i-1-1-1-1    linear of order 4
ρ7111-1-1111i-i-i1i-1-1-1-1    linear of order 4
ρ8111-1-1111i-ii-1-i1111    linear of order 4
ρ92222-2-22-2000000000    orthogonal lifted from D4
ρ10222-22-22-2000000000    orthogonal lifted from D4
ρ1144-40000000000-22-22    orthogonal lifted from C42⋊C4
ρ1244-400000000002-22-2    orthogonal lifted from C42⋊C4
ρ13444000-40000000000    orthogonal lifted from C23⋊C4
ρ144-400020-2000002-20-2-20    complex faithful
ρ154-400020-200000-2-202-20    complex faithful
ρ164-4000-202000000-2-202-2    complex faithful
ρ174-4000-2020000002-20-2-2    complex faithful

Permutation representations of (C4×C8)⋊6C4
On 16 points - transitive group 16T363
Generators in S16
(1 5)(2 6)(3 7)(4 8)(9 11 13 15)(10 12 14 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 11)(2 10 4 16)(3 9 7 13)(5 15)(6 14 8 12)

G:=sub<Sym(16)| (1,5)(2,6)(3,7)(4,8)(9,11,13,15)(10,12,14,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,10,4,16)(3,9,7,13)(5,15)(6,14,8,12)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,11,13,15)(10,12,14,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,10,4,16)(3,9,7,13)(5,15)(6,14,8,12) );

G=PermutationGroup([(1,5),(2,6),(3,7),(4,8),(9,11,13,15),(10,12,14,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,11),(2,10,4,16),(3,9,7,13),(5,15),(6,14,8,12)])

G:=TransitiveGroup(16,363);

Matrix representation of (C4×C8)⋊6C4 in GL4(𝔽3) generated by

1020
1012
0221
2121
,
0202
0220
0002
1101
,
1021
0021
0001
0112
G:=sub<GL(4,GF(3))| [1,1,0,2,0,0,2,1,2,1,2,2,0,2,1,1],[0,0,0,1,2,2,0,1,0,2,0,0,2,0,2,1],[1,0,0,0,0,0,0,1,2,2,0,1,1,1,1,2] >;

(C4×C8)⋊6C4 in GAP, Magma, Sage, TeX

(C_4\times C_8)\rtimes_6C_4
% in TeX

G:=Group("(C4xC8):6C4");
// GroupNames label

G:=SmallGroup(128,141);
// by ID

G=gap.SmallGroup(128,141);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,1059,520,794,745,1684,1411,375,172,4037]);
// Polycyclic

G:=Group<a,b,c|a^4=b^8=c^4=1,a*b=b*a,c*a*c^-1=a*b^2,c*b*c^-1=a*b^3>;
// generators/relations

Export

Subgroup lattice of (C4×C8)⋊6C4 in TeX
Character table of (C4×C8)⋊6C4 in TeX

׿
×
𝔽