p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊C4.96D4, (C2×C8).46D4, C4.67C22≀C2, (C2×D4).107D4, (C22×D8).4C2, C4.25(C4⋊D4), C4.C42⋊12C2, C4.69(C4.4D4), C2.19(D4.4D4), C23.275(C4○D4), C23.37D4⋊29C2, (C22×C4).726C23, (C22×C8).112C22, (C22×D4).82C22, C22.233(C4⋊D4), C42.6C22⋊18C2, C42⋊C2.58C22, C2.18(C23.10D4), (C2×M4(2)).227C22, C22.54(C22.D4), (C2×C4).80(C4○D4), (C2×C4).1042(C2×D4), (C2×C4.D4)⋊24C2, SmallGroup(128,777)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊C4.96D4
G = < a,b,c,d | a4=b4=d2=1, c4=a2, bab-1=dad=a-1, ac=ca, cbc-1=a2b-1, dbd=ab, dcd=a2c3 >
Subgroups: 408 in 148 conjugacy classes, 42 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, C2×D4, C24, C4.D4, D4⋊C4, C4⋊C8, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C2×D8, C22×D4, C4.C42, C2×C4.D4, C23.37D4, C42.6C22, C22×D8, C4⋊C4.96D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4, D4.4D4, C4⋊C4.96D4
Character table of C4⋊C4.96D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
(1 27 5 31)(2 28 6 32)(3 29 7 25)(4 30 8 26)(9 23 13 19)(10 24 14 20)(11 17 15 21)(12 18 16 22)
(1 10 29 22)(2 19 30 15)(3 12 31 24)(4 21 32 9)(5 14 25 18)(6 23 26 11)(7 16 27 20)(8 17 28 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 20)(10 19)(11 18)(12 17)(13 24)(14 23)(15 22)(16 21)
G:=sub<Sym(32)| (1,27,5,31)(2,28,6,32)(3,29,7,25)(4,30,8,26)(9,23,13,19)(10,24,14,20)(11,17,15,21)(12,18,16,22), (1,10,29,22)(2,19,30,15)(3,12,31,24)(4,21,32,9)(5,14,25,18)(6,23,26,11)(7,16,27,20)(8,17,28,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)>;
G:=Group( (1,27,5,31)(2,28,6,32)(3,29,7,25)(4,30,8,26)(9,23,13,19)(10,24,14,20)(11,17,15,21)(12,18,16,22), (1,10,29,22)(2,19,30,15)(3,12,31,24)(4,21,32,9)(5,14,25,18)(6,23,26,11)(7,16,27,20)(8,17,28,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21) );
G=PermutationGroup([[(1,27,5,31),(2,28,6,32),(3,29,7,25),(4,30,8,26),(9,23,13,19),(10,24,14,20),(11,17,15,21),(12,18,16,22)], [(1,10,29,22),(2,19,30,15),(3,12,31,24),(4,21,32,9),(5,14,25,18),(6,23,26,11),(7,16,27,20),(8,17,28,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,20),(10,19),(11,18),(12,17),(13,24),(14,23),(15,22),(16,21)]])
Matrix representation of C4⋊C4.96D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 1 |
0 | 0 | 0 | 13 | 16 | 0 |
13 | 9 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 6 | 11 |
0 | 0 | 12 | 0 | 11 | 0 |
0 | 0 | 3 | 3 | 12 | 5 |
0 | 0 | 0 | 3 | 5 | 12 |
1 | 2 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 14 | 3 |
0 | 0 | 12 | 12 | 14 | 14 |
1 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 0 |
0 | 0 | 3 | 6 | 0 | 0 |
0 | 0 | 0 | 5 | 14 | 3 |
0 | 0 | 12 | 12 | 3 | 3 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,4,0,0,0,2,16,4,13,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,9,4,0,0,0,0,0,0,10,12,3,0,0,0,0,0,3,3,0,0,6,11,12,5,0,0,11,0,5,12],[1,16,0,0,0,0,2,16,0,0,0,0,0,0,11,3,0,12,0,0,11,0,5,12,0,0,0,0,14,14,0,0,0,0,3,14],[1,16,0,0,0,0,0,16,0,0,0,0,0,0,11,3,0,12,0,0,11,6,5,12,0,0,0,0,14,3,0,0,0,0,3,3] >;
C4⋊C4.96D4 in GAP, Magma, Sage, TeX
C_4\rtimes C_4._{96}D_4
% in TeX
G:=Group("C4:C4.96D4");
// GroupNames label
G:=SmallGroup(128,777);
// by ID
G=gap.SmallGroup(128,777);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,58,2019,1018,248,718,1027]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b^-1,d*b*d=a*b,d*c*d=a^2*c^3>;
// generators/relations
Export