extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1D4 = M4(2).D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).1D4 | 128,741 |
(C2×C8).2D4 = (C2×C8).2D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).2D4 | 128,749 |
(C2×C8).3D4 = C42.131D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).3D4 | 128,782 |
(C2×C8).4D4 = C22⋊C4.7D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).4D4 | 128,785 |
(C2×C8).5D4 = (C2×C8).D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).5D4 | 128,813 |
(C2×C8).6D4 = (C2×C8).6D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).6D4 | 128,814 |
(C2×C8).7D4 = C24.11Q8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).7D4 | 128,823 |
(C2×C8).8D4 = C42.10D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).8D4 | 128,830 |
(C2×C8).9D4 = C42.32Q8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).9D4 | 128,834 |
(C2×C8).10D4 = C22⋊C4.Q8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).10D4 | 128,835 |
(C2×C8).11D4 = D8⋊D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).11D4 | 128,922 |
(C2×C8).12D4 = D8.D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).12D4 | 128,923 |
(C2×C8).13D4 = M5(2).C22 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).13D4 | 128,970 |
(C2×C8).14D4 = C23.10SD16 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).14D4 | 128,971 |
(C2×C8).15D4 = C24.C8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).15D4 | 128,52 |
(C2×C8).16D4 = C23.1M4(2) | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).16D4 | 128,53 |
(C2×C8).17D4 = C42.C8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).17D4 | 128,59 |
(C2×C8).18D4 = C22⋊C4.C8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).18D4 | 128,60 |
(C2×C8).19D4 = C23.D8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).19D4 | 128,71 |
(C2×C8).20D4 = C23.2D8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).20D4 | 128,72 |
(C2×C8).21D4 = C23.SD16 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).21D4 | 128,73 |
(C2×C8).22D4 = C23.2SD16 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).22D4 | 128,74 |
(C2×C8).23D4 = C4.C4≀C2 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).23D4 | 128,87 |
(C2×C8).24D4 = C42.(C2×C4) | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).24D4 | 128,88 |
(C2×C8).25D4 = M4(2).41D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).25D4 | 128,593 |
(C2×C8).26D4 = (C2×D4).Q8 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).26D4 | 128,600 |
(C2×C8).27D4 = M4(2).44D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).27D4 | 128,613 |
(C2×C8).28D4 = M4(2).46D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).28D4 | 128,634 |
(C2×C8).29D4 = M4(2).47D4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).29D4 | 128,635 |
(C2×C8).30D4 = C4.(C4×D4) | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).30D4 | 128,641 |
(C2×C8).31D4 = Q32⋊C4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).31D4 | 128,912 |
(C2×C8).32D4 = D16⋊C4 | φ: D4/C1 → D4 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).32D4 | 128,913 |
(C2×C8).33D4 = C42.664C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).33D4 | 128,449 |
(C2×C8).34D4 = C42.665C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).34D4 | 128,450 |
(C2×C8).35D4 = C42.666C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).35D4 | 128,451 |
(C2×C8).36D4 = C42.667C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).36D4 | 128,452 |
(C2×C8).37D4 = C8⋊3D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).37D4 | 128,453 |
(C2×C8).38D4 = C8.2D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).38D4 | 128,454 |
(C2×C8).39D4 = C8⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).39D4 | 128,455 |
(C2×C8).40D4 = C23⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).40D4 | 128,733 |
(C2×C8).41D4 = (C2×C8).41D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).41D4 | 128,747 |
(C2×C8).42D4 = (C2×C4)⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).42D4 | 128,748 |
(C2×C8).43D4 = M4(2).4D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).43D4 | 128,750 |
(C2×C8).44D4 = M4(2).6D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).44D4 | 128,752 |
(C2×C8).45D4 = C24.86D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).45D4 | 128,768 |
(C2×C8).46D4 = C4⋊C4.96D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).46D4 | 128,777 |
(C2×C8).47D4 = C4⋊C4.98D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).47D4 | 128,779 |
(C2×C8).48D4 = M4(2).11D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).48D4 | 128,784 |
(C2×C8).49D4 = (C2×C4)⋊3D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).49D4 | 128,786 |
(C2×C8).50D4 = (C2×C4)⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).50D4 | 128,788 |
(C2×C8).51D4 = (C2×C4).23D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).51D4 | 128,799 |
(C2×C8).52D4 = (C2×C8).52D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).52D4 | 128,800 |
(C2×C8).53D4 = C23.12D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).53D4 | 128,807 |
(C2×C8).54D4 = C24.88D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).54D4 | 128,808 |
(C2×C8).55D4 = (C2×C8).55D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).55D4 | 128,810 |
(C2×C8).56D4 = (C2×C4).26D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).56D4 | 128,818 |
(C2×C8).57D4 = (C2×C4).21Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).57D4 | 128,819 |
(C2×C8).58D4 = M4(2).Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).58D4 | 128,821 |
(C2×C8).59D4 = (C2×C4).27D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).59D4 | 128,825 |
(C2×C8).60D4 = (C2×C8).60D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).60D4 | 128,827 |
(C2×C8).61D4 = D8⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).61D4 | 128,916 |
(C2×C8).62D4 = Q16⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).62D4 | 128,917 |
(C2×C8).63D4 = D8.9D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).63D4 | 128,919 |
(C2×C8).64D4 = Q16.8D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).64D4 | 128,920 |
(C2×C8).65D4 = D8⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).65D4 | 128,938 |
(C2×C8).66D4 = Q16⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).66D4 | 128,939 |
(C2×C8).67D4 = D8.4D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).67D4 | 128,940 |
(C2×C8).68D4 = Q16.4D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).68D4 | 128,941 |
(C2×C8).69D4 = D8⋊1Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).69D4 | 128,956 |
(C2×C8).70D4 = Q16⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).70D4 | 128,957 |
(C2×C8).71D4 = D8⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).71D4 | 128,958 |
(C2×C8).72D4 = C4.Q32 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).72D4 | 128,959 |
(C2×C8).73D4 = C22.D16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).73D4 | 128,964 |
(C2×C8).74D4 = C23.49D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).74D4 | 128,965 |
(C2×C8).75D4 = C23.50D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).75D4 | 128,967 |
(C2×C8).76D4 = C23.51D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).76D4 | 128,968 |
(C2×C8).77D4 = C8.24D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).77D4 | 128,89 |
(C2×C8).78D4 = C8.25D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).78D4 | 128,90 |
(C2×C8).79D4 = C8.29D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).79D4 | 128,91 |
(C2×C8).80D4 = C8.1Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).80D4 | 128,98 |
(C2×C8).81D4 = C8.11C42 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).81D4 | 128,115 |
(C2×C8).82D4 = C23.9D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).82D4 | 128,116 |
(C2×C8).83D4 = C8.13C42 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).83D4 | 128,117 |
(C2×C8).84D4 = D16⋊3C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).84D4 | 128,150 |
(C2×C8).85D4 = M6(2)⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4+ | (C2xC8).85D4 | 128,151 |
(C2×C8).86D4 = C16.18D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | 4- | (C2xC8).86D4 | 128,152 |
(C2×C8).87D4 = C8.Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).87D4 | 128,158 |
(C2×C8).88D4 = C8⋊D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).88D4 | 128,417 |
(C2×C8).89D4 = C8⋊SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).89D4 | 128,418 |
(C2×C8).90D4 = C8⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).90D4 | 128,419 |
(C2×C8).91D4 = C8⋊2SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).91D4 | 128,420 |
(C2×C8).92D4 = C8.D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).92D4 | 128,421 |
(C2×C8).93D4 = C8.SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).93D4 | 128,422 |
(C2×C8).94D4 = C8⋊3SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).94D4 | 128,423 |
(C2×C8).95D4 = C8⋊Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).95D4 | 128,424 |
(C2×C8).96D4 = C8⋊4SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).96D4 | 128,425 |
(C2×C8).97D4 = C8⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).97D4 | 128,426 |
(C2×C8).98D4 = C8.8SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).98D4 | 128,427 |
(C2×C8).99D4 = C8.3Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).99D4 | 128,428 |
(C2×C8).100D4 = C24.67D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).100D4 | 128,541 |
(C2×C8).101D4 = C24.9Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).101D4 | 128,543 |
(C2×C8).102D4 = (C2×D4).24Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).102D4 | 128,544 |
(C2×C8).103D4 = (C2×C8).103D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).103D4 | 128,545 |
(C2×C8).104D4 = C8○D4⋊C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).104D4 | 128,546 |
(C2×C8).105D4 = C4○D4.4Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).105D4 | 128,547 |
(C2×C8).106D4 = C4○D4.5Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).106D4 | 128,548 |
(C2×C8).107D4 = C8.(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).107D4 | 128,565 |
(C2×C8).108D4 = C42.26Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).108D4 | 128,579 |
(C2×C8).109D4 = C42.106D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).109D4 | 128,581 |
(C2×C8).110D4 = C4.(C4×Q8) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).110D4 | 128,675 |
(C2×C8).111D4 = C8⋊(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).111D4 | 128,676 |
(C2×C8).112D4 = C42.116D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).112D4 | 128,707 |
(C2×C8).113D4 = M4(2).30D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).113D4 | 128,708 |
(C2×C8).114D4 = M4(2).31D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).114D4 | 128,709 |
(C2×C8).115D4 = M4(2).32D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).115D4 | 128,710 |
(C2×C8).116D4 = M4(2).33D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).116D4 | 128,711 |
(C2×C8).117D4 = C23.39D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).117D4 | 128,871 |
(C2×C8).118D4 = C23.40D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).118D4 | 128,872 |
(C2×C8).119D4 = C23.41D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).119D4 | 128,873 |
(C2×C8).120D4 = C23.20SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).120D4 | 128,875 |
(C2×C8).121D4 = C2×D8⋊2C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).121D4 | 128,876 |
(C2×C8).122D4 = C23.13D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).122D4 | 128,877 |
(C2×C8).123D4 = C2×M5(2)⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).123D4 | 128,878 |
(C2×C8).124D4 = C2×C8.17D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).124D4 | 128,879 |
(C2×C8).125D4 = C23.21SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).125D4 | 128,880 |
(C2×C8).126D4 = C2×C8.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).126D4 | 128,886 |
(C2×C8).127D4 = M5(2)⋊3C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).127D4 | 128,887 |
(C2×C8).128D4 = M5(2)⋊1C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).128D4 | 128,891 |
(C2×C8).129D4 = M5(2).1C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).129D4 | 128,893 |
(C2×C8).130D4 = C8.3D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).130D4 | 128,944 |
(C2×C8).131D4 = D8⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).131D4 | 128,945 |
(C2×C8).132D4 = C8.5D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).132D4 | 128,946 |
(C2×C8).133D4 = D8⋊3Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).133D4 | 128,962 |
(C2×C8).134D4 = D8.2Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).134D4 | 128,963 |
(C2×C8).135D4 = C8.12SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).135D4 | 128,975 |
(C2×C8).136D4 = C8.13SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).136D4 | 128,976 |
(C2×C8).137D4 = C8.14SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).137D4 | 128,977 |
(C2×C8).138D4 = C16⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).138D4 | 128,982 |
(C2×C8).139D4 = C8.7D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).139D4 | 128,983 |
(C2×C8).140D4 = C16⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).140D4 | 128,987 |
(C2×C8).141D4 = C32⋊C22 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4+ | (C2xC8).141D4 | 128,995 |
(C2×C8).142D4 = Q64⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | 4- | (C2xC8).142D4 | 128,996 |
(C2×C8).143D4 = C2×C8.D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).143D4 | 128,1785 |
(C2×C8).144D4 = C8.D4⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).144D4 | 128,1791 |
(C2×C8).145D4 = C2×C8.2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).145D4 | 128,1881 |
(C2×C8).146D4 = M4(2).20D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).146D4 | 128,1888 |
(C2×C8).147D4 = C2×C16⋊C22 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).147D4 | 128,2144 |
(C2×C8).148D4 = C2×Q32⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).148D4 | 128,2145 |
(C2×C8).149D4 = D16⋊C22 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).149D4 | 128,2146 |
(C2×C8).150D4 = C8⋊5SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).150D4 | 128,446 |
(C2×C8).151D4 = C8⋊6SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).151D4 | 128,447 |
(C2×C8).152D4 = C8.9SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).152D4 | 128,448 |
(C2×C8).153D4 = (C22×D8).C2 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).153D4 | 128,744 |
(C2×C8).154D4 = (C2×C4)⋊3SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).154D4 | 128,745 |
(C2×C8).155D4 = M4(2).5D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).155D4 | 128,751 |
(C2×C8).156D4 = C24.85D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).156D4 | 128,767 |
(C2×C8).157D4 = C4⋊C4.97D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).157D4 | 128,778 |
(C2×C8).158D4 = M4(2).10D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).158D4 | 128,783 |
(C2×C8).159D4 = (C2×C4)⋊5SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).159D4 | 128,787 |
(C2×C8).160D4 = M4(2).12D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).160D4 | 128,795 |
(C2×C8).161D4 = M4(2).13D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).161D4 | 128,796 |
(C2×C8).162D4 = C4⋊C4.106D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).162D4 | 128,797 |
(C2×C8).163D4 = (C2×Q8).8Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).163D4 | 128,798 |
(C2×C8).164D4 = C24.89D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).164D4 | 128,809 |
(C2×C8).165D4 = (C2×C8).165D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).165D4 | 128,811 |
(C2×C8).166D4 = C4.(C4⋊Q8) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).166D4 | 128,820 |
(C2×C8).167D4 = M4(2).2Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).167D4 | 128,822 |
(C2×C8).168D4 = (C2×C8).168D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).168D4 | 128,824 |
(C2×C8).169D4 = (C2×C8).169D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).169D4 | 128,826 |
(C2×C8).170D4 = (C2×C8).170D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).170D4 | 128,828 |
(C2×C8).171D4 = (C2×C8).171D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).171D4 | 128,829 |
(C2×C8).172D4 = D8⋊8D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).172D4 | 128,918 |
(C2×C8).173D4 = D8.10D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).173D4 | 128,921 |
(C2×C8).174D4 = D8.5D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).174D4 | 128,942 |
(C2×C8).175D4 = Q16.5D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).175D4 | 128,943 |
(C2×C8).176D4 = D8.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).176D4 | 128,960 |
(C2×C8).177D4 = Q16.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).177D4 | 128,961 |
(C2×C8).178D4 = C23.19D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).178D4 | 128,966 |
(C2×C8).179D4 = C23.20D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).179D4 | 128,969 |
(C2×C8).180D4 = C8.32D8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).180D4 | 128,68 |
(C2×C8).181D4 = C16.C8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).181D4 | 128,101 |
(C2×C8).182D4 = C42.2C8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).182D4 | 128,107 |
(C2×C8).183D4 = C8⋊M4(2) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).183D4 | 128,324 |
(C2×C8).184D4 = C8.M4(2) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).184D4 | 128,325 |
(C2×C8).185D4 = C8⋊3M4(2) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).185D4 | 128,326 |
(C2×C8).186D4 = C42.248C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).186D4 | 128,429 |
(C2×C8).187D4 = C42.249C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).187D4 | 128,430 |
(C2×C8).188D4 = C42.250C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).188D4 | 128,431 |
(C2×C8).189D4 = C42.251C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).189D4 | 128,432 |
(C2×C8).190D4 = C42.252C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).190D4 | 128,433 |
(C2×C8).191D4 = C42.253C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).191D4 | 128,434 |
(C2×C8).192D4 = C42.254C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).192D4 | 128,435 |
(C2×C8).193D4 = C42.255C23 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).193D4 | 128,436 |
(C2×C8).194D4 = D4.3C42 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).194D4 | 128,497 |
(C2×C8).195D4 = (C2×C8).195D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).195D4 | 128,583 |
(C2×C8).196D4 = C24.75D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).196D4 | 128,626 |
(C2×C8).197D4 = (C2×C8).Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).197D4 | 128,649 |
(C2×C8).198D4 = C23.9M4(2) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).198D4 | 128,656 |
(C2×C8).199D4 = C2.(C8⋊D4) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).199D4 | 128,667 |
(C2×C8).200D4 = C2.(C8⋊2D4) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).200D4 | 128,668 |
(C2×C8).201D4 = C42.107D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).201D4 | 128,670 |
(C2×C8).202D4 = C42.27Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).202D4 | 128,672 |
(C2×C8).203D4 = C42.28Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).203D4 | 128,678 |
(C2×C8).204D4 = C42.110D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).204D4 | 128,691 |
(C2×C8).205D4 = C42.111D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).205D4 | 128,692 |
(C2×C8).206D4 = (C2×Q16)⋊10C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).206D4 | 128,703 |
(C2×C8).207D4 = (C2×D8)⋊10C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).207D4 | 128,704 |
(C2×C8).208D4 = C8⋊(C22⋊C4) | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).208D4 | 128,705 |
(C2×C8).209D4 = M5(2)⋊12C22 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).209D4 | 128,849 |
(C2×C8).210D4 = SD32⋊3C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).210D4 | 128,907 |
(C2×C8).211D4 = Q32⋊4C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).211D4 | 128,908 |
(C2×C8).212D4 = D16⋊4C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).212D4 | 128,909 |
(C2×C8).213D4 = D16⋊5C4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).213D4 | 128,911 |
(C2×C8).214D4 = C16⋊D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).214D4 | 128,950 |
(C2×C8).215D4 = C16.D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).215D4 | 128,951 |
(C2×C8).216D4 = C16⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).216D4 | 128,952 |
(C2×C8).217D4 = C8×D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).217D4 | 128,307 |
(C2×C8).218D4 = C8×SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).218D4 | 128,308 |
(C2×C8).219D4 = C8×Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).219D4 | 128,309 |
(C2×C8).220D4 = C8⋊5D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).220D4 | 128,438 |
(C2×C8).221D4 = C8⋊5Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).221D4 | 128,439 |
(C2×C8).222D4 = C82⋊12C2 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).222D4 | 128,440 |
(C2×C8).223D4 = C82⋊5C2 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).223D4 | 128,441 |
(C2×C8).224D4 = C8.7Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).224D4 | 128,442 |
(C2×C8).225D4 = C82⋊3C2 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).225D4 | 128,443 |
(C2×C8).226D4 = C42.428D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).226D4 | 128,669 |
(C2×C8).227D4 = C42.61Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).227D4 | 128,671 |
(C2×C8).228D4 = C42.62Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).228D4 | 128,677 |
(C2×C8).229D4 = C42.431D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).229D4 | 128,688 |
(C2×C8).230D4 = C42.433D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).230D4 | 128,690 |
(C2×C8).231D4 = C4×D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).231D4 | 128,904 |
(C2×C8).232D4 = C4×SD32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).232D4 | 128,905 |
(C2×C8).233D4 = C4×Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).233D4 | 128,906 |
(C2×C8).234D4 = C16⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).234D4 | 128,947 |
(C2×C8).235D4 = C16.19D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).235D4 | 128,948 |
(C2×C8).236D4 = C16⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).236D4 | 128,949 |
(C2×C8).237D4 = D16⋊2C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).237D4 | 128,147 |
(C2×C8).238D4 = Q32⋊2C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).238D4 | 128,148 |
(C2×C8).239D4 = C32⋊3C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).239D4 | 128,155 |
(C2×C8).240D4 = C32⋊4C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).240D4 | 128,156 |
(C2×C8).241D4 = C8⋊4D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).241D4 | 128,444 |
(C2×C8).242D4 = C8⋊4Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).242D4 | 128,445 |
(C2×C8).243D4 = C42.59Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).243D4 | 128,577 |
(C2×C8).244D4 = (C2×C4)⋊6Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).244D4 | 128,701 |
(C2×C8).245D4 = (C2×C4)⋊6D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).245D4 | 128,702 |
(C2×C8).246D4 = C2×C2.D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).246D4 | 128,868 |
(C2×C8).247D4 = C2×C2.Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).247D4 | 128,869 |
(C2×C8).248D4 = C2×C16⋊3C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).248D4 | 128,888 |
(C2×C8).249D4 = C2×C16⋊4C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).249D4 | 128,889 |
(C2×C8).250D4 = C4.4D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).250D4 | 128,972 |
(C2×C8).251D4 = C4.SD32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).251D4 | 128,973 |
(C2×C8).252D4 = C4⋊D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).252D4 | 128,978 |
(C2×C8).253D4 = C4⋊Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).253D4 | 128,979 |
(C2×C8).254D4 = C16⋊5D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).254D4 | 128,980 |
(C2×C8).255D4 = C16⋊2Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).255D4 | 128,984 |
(C2×C8).256D4 = C16⋊3Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).256D4 | 128,986 |
(C2×C8).257D4 = C2×D32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).257D4 | 128,991 |
(C2×C8).258D4 = C2×SD64 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).258D4 | 128,992 |
(C2×C8).259D4 = C2×Q64 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).259D4 | 128,993 |
(C2×C8).260D4 = C2×C4⋊Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).260D4 | 128,1877 |
(C2×C8).261D4 = C2×C8.12D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).261D4 | 128,1878 |
(C2×C8).262D4 = C22×D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).262D4 | 128,2140 |
(C2×C8).263D4 = C22×SD32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).263D4 | 128,2141 |
(C2×C8).264D4 = C22×Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).264D4 | 128,2142 |
(C2×C8).265D4 = D16.C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | 2 | (C2xC8).265D4 | 128,149 |
(C2×C8).266D4 = C32.C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | 2 | (C2xC8).266D4 | 128,157 |
(C2×C8).267D4 = C42.324D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).267D4 | 128,580 |
(C2×C8).268D4 = C42.326D4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).268D4 | 128,706 |
(C2×C8).269D4 = C2×D8.C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).269D4 | 128,874 |
(C2×C8).270D4 = C2×C8.4Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).270D4 | 128,892 |
(C2×C8).271D4 = C4○D32 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | 2 | (C2xC8).271D4 | 128,994 |
(C2×C8).272D4 = C2×C4○D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).272D4 | 128,2143 |
(C2×C8).273D4 = C8⋊8SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).273D4 | 128,437 |
(C2×C8).274D4 = C42.58Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).274D4 | 128,576 |
(C2×C8).275D4 = C42.60Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).275D4 | 128,578 |
(C2×C8).276D4 = (C2×C4)⋊9SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).276D4 | 128,700 |
(C2×C8).277D4 = C23.24D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).277D4 | 128,870 |
(C2×C8).278D4 = C23.25D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).278D4 | 128,890 |
(C2×C8).279D4 = C8.22SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).279D4 | 128,974 |
(C2×C8).280D4 = C8.21D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).280D4 | 128,981 |
(C2×C8).281D4 = C16.5Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).281D4 | 128,985 |
(C2×C8).282D4 = C8≀C2 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 16 | 2 | (C2xC8).282D4 | 128,67 |
(C2×C8).283D4 = C16.3C8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).283D4 | 128,105 |
(C2×C8).284D4 = C8⋊6D8 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).284D4 | 128,321 |
(C2×C8).285D4 = C8⋊9SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).285D4 | 128,322 |
(C2×C8).286D4 = C8⋊6Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).286D4 | 128,323 |
(C2×C8).287D4 = C4⋊C8⋊13C4 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).287D4 | 128,502 |
(C2×C8).288D4 = C4⋊M5(2) | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).288D4 | 128,882 |
(C2×C8).289D4 = C8○D16 | φ: D4/C4 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).289D4 | 128,910 |
(C2×C8).290D4 = C23⋊C16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).290D4 | 128,46 |
(C2×C8).291D4 = C23.M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).291D4 | 128,47 |
(C2×C8).292D4 = C22.M5(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).292D4 | 128,54 |
(C2×C8).293D4 = C23.7M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).293D4 | 128,55 |
(C2×C8).294D4 = D4⋊C16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).294D4 | 128,61 |
(C2×C8).295D4 = C4.16D16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).295D4 | 128,63 |
(C2×C8).296D4 = Q16⋊1C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).296D4 | 128,64 |
(C2×C8).297D4 = D8⋊C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).297D4 | 128,65 |
(C2×C8).298D4 = Q16⋊C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).298D4 | 128,66 |
(C2×C8).299D4 = Q8⋊C16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).299D4 | 128,69 |
(C2×C8).300D4 = C22.SD32 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).300D4 | 128,79 |
(C2×C8).301D4 = C23.32D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).301D4 | 128,80 |
(C2×C8).302D4 = C23.12SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).302D4 | 128,81 |
(C2×C8).303D4 = C23.13SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).303D4 | 128,82 |
(C2×C8).304D4 = SD16⋊C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).304D4 | 128,310 |
(C2×C8).305D4 = Q16⋊5C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).305D4 | 128,311 |
(C2×C8).306D4 = D8⋊5C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).306D4 | 128,312 |
(C2×C8).307D4 = D4.M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).307D4 | 128,317 |
(C2×C8).308D4 = D4⋊2M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).308D4 | 128,318 |
(C2×C8).309D4 = Q8.M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).309D4 | 128,319 |
(C2×C8).310D4 = Q8⋊2M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).310D4 | 128,320 |
(C2×C8).311D4 = D4.2SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).311D4 | 128,409 |
(C2×C8).312D4 = Q8.2SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).312D4 | 128,410 |
(C2×C8).313D4 = D4.3SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).313D4 | 128,411 |
(C2×C8).314D4 = Q8.3SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).314D4 | 128,412 |
(C2×C8).315D4 = D4.2D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).315D4 | 128,413 |
(C2×C8).316D4 = Q8.2D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).316D4 | 128,414 |
(C2×C8).317D4 = D4.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).317D4 | 128,415 |
(C2×C8).318D4 = Q8.2Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).318D4 | 128,416 |
(C2×C8).319D4 = C23.21M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).319D4 | 128,582 |
(C2×C8).320D4 = M4(2).42D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).320D4 | 128,598 |
(C2×C8).321D4 = M4(2).43D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).321D4 | 128,608 |
(C2×C8).322D4 = C24.135D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).322D4 | 128,624 |
(C2×C8).323D4 = M4(2).48D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).323D4 | 128,639 |
(C2×C8).324D4 = M4(2).49D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).324D4 | 128,640 |
(C2×C8).325D4 = C4⋊C4⋊3C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).325D4 | 128,648 |
(C2×C8).326D4 = M4(2).3Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).326D4 | 128,654 |
(C2×C8).327D4 = C22⋊C4⋊4C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).327D4 | 128,655 |
(C2×C8).328D4 = M4(2).24D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).328D4 | 128,661 |
(C2×C8).329D4 = C4.10D4⋊3C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).329D4 | 128,662 |
(C2×C8).330D4 = C4.D4⋊3C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).330D4 | 128,663 |
(C2×C8).331D4 = C2.(C8⋊8D4) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).331D4 | 128,665 |
(C2×C8).332D4 = C2.(C8⋊7D4) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).332D4 | 128,666 |
(C2×C8).333D4 = C4.D16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).333D4 | 128,93 |
(C2×C8).334D4 = C8.27D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).334D4 | 128,94 |
(C2×C8).335D4 = C4.10D16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).335D4 | 128,96 |
(C2×C8).336D4 = C4.6Q32 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).336D4 | 128,97 |
(C2×C8).337D4 = C8.7C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).337D4 | 128,112 |
(C2×C8).338D4 = C8.2C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).338D4 | 128,119 |
(C2×C8).339D4 = C8⋊7D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).339D4 | 128,399 |
(C2×C8).340D4 = C8⋊13SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).340D4 | 128,400 |
(C2×C8).341D4 = C8.28D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).341D4 | 128,401 |
(C2×C8).342D4 = Q8⋊1Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).342D4 | 128,402 |
(C2×C8).343D4 = C8⋊10SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).343D4 | 128,405 |
(C2×C8).344D4 = C8⋊7Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).344D4 | 128,406 |
(C2×C8).345D4 = D4.1Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).345D4 | 128,407 |
(C2×C8).346D4 = Q8.1Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).346D4 | 128,408 |
(C2×C8).347D4 = C23.22D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).347D4 | 128,540 |
(C2×C8).348D4 = C8⋊5(C4⋊C4) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).348D4 | 128,674 |
(C2×C8).349D4 = M4(2).6Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).349D4 | 128,684 |
(C2×C8).350D4 = C2×C8.18D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).350D4 | 128,1781 |
(C2×C8).351D4 = C2×D4.4D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).351D4 | 128,1797 |
(C2×C8).352D4 = C2×D4.5D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).352D4 | 128,1798 |
(C2×C8).353D4 = C8.8C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).353D4 | 128,113 |
(C2×C8).354D4 = M5(2).C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).354D4 | 128,120 |
(C2×C8).355D4 = C8.4C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).355D4 | 128,121 |
(C2×C8).356D4 = C24.19Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).356D4 | 128,542 |
(C2×C8).357D4 = M4(2).27D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).357D4 | 128,685 |
(C2×C8).358D4 = M4(2).10C23 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).358D4 | 128,1799 |
(C2×C8).359D4 = C8.30D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).359D4 | 128,92 |
(C2×C8).360D4 = C8.16Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).360D4 | 128,95 |
(C2×C8).361D4 = C8.9C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).361D4 | 128,114 |
(C2×C8).362D4 = C8.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).362D4 | 128,118 |
(C2×C8).363D4 = C8⋊8D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).363D4 | 128,397 |
(C2×C8).364D4 = C8⋊14SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).364D4 | 128,398 |
(C2×C8).365D4 = C8⋊11SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).365D4 | 128,403 |
(C2×C8).366D4 = C8⋊8Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).366D4 | 128,404 |
(C2×C8).367D4 = C24.133D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).367D4 | 128,539 |
(C2×C8).368D4 = C8⋊7(C4⋊C4) | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).368D4 | 128,673 |
(C2×C8).369D4 = M4(2).5Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).369D4 | 128,683 |
(C2×C8).370D4 = C2×D4.3D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).370D4 | 128,1796 |
(C2×C8).371D4 = C8.31D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).371D4 | 128,62 |
(C2×C8).372D4 = C8.17Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).372D4 | 128,70 |
(C2×C8).373D4 = C42.7C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).373D4 | 128,108 |
(C2×C8).374D4 = M5(2)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).374D4 | 128,109 |
(C2×C8).375D4 = M4(2).C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).375D4 | 128,110 |
(C2×C8).376D4 = M5(2)⋊7C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).376D4 | 128,111 |
(C2×C8).377D4 = C8⋊9D8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).377D4 | 128,313 |
(C2×C8).378D4 = C8⋊12SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).378D4 | 128,314 |
(C2×C8).379D4 = C8⋊15SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).379D4 | 128,315 |
(C2×C8).380D4 = C8⋊9Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).380D4 | 128,316 |
(C2×C8).381D4 = C23.36C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).381D4 | 128,484 |
(C2×C8).382D4 = C23.17C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).382D4 | 128,485 |
(C2×C8).383D4 = C23.5C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).383D4 | 128,489 |
(C2×C8).384D4 = Q8.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).384D4 | 128,496 |
(C2×C8).385D4 = C4⋊C8⋊14C4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).385D4 | 128,503 |
(C2×C8).386D4 = C8.5C42 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).386D4 | 128,505 |
(C2×C8).387D4 = C24.5C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).387D4 | 128,844 |
(C2×C8).388D4 = (C2×D4).5C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).388D4 | 128,845 |
(C2×C8).389D4 = C2×C23.C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).389D4 | 128,846 |
(C2×C8).390D4 = M5(2).19C22 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).390D4 | 128,847 |
(C2×C8).391D4 = C2×D4.C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).391D4 | 128,848 |
(C2×C8).392D4 = C4⋊C4.7C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).392D4 | 128,883 |
(C2×C8).393D4 = M4(2).1C8 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).393D4 | 128,885 |
(C2×C8).394D4 = C2×C8.26D4 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).394D4 | 128,1686 |
(C2×C8).395D4 = C42.283C23 | φ: D4/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).395D4 | 128,1687 |
(C2×C8).396D4 = C8⋊2C16 | central extension (φ=1) | 128 | | (C2xC8).396D4 | 128,99 |
(C2×C8).397D4 = C8.36D8 | central extension (φ=1) | 128 | | (C2xC8).397D4 | 128,102 |
(C2×C8).398D4 = C22.7M5(2) | central extension (φ=1) | 128 | | (C2xC8).398D4 | 128,106 |
(C2×C8).399D4 = C8×C22⋊C4 | central extension (φ=1) | 64 | | (C2xC8).399D4 | 128,483 |
(C2×C8).400D4 = C8×C4⋊C4 | central extension (φ=1) | 128 | | (C2xC8).400D4 | 128,501 |
(C2×C8).401D4 = C8.14C42 | central extension (φ=1) | 32 | | (C2xC8).401D4 | 128,504 |
(C2×C8).402D4 = C2×C22⋊C16 | central extension (φ=1) | 64 | | (C2xC8).402D4 | 128,843 |
(C2×C8).403D4 = C2×C4⋊C16 | central extension (φ=1) | 128 | | (C2xC8).403D4 | 128,881 |
(C2×C8).404D4 = C2×C8.C8 | central extension (φ=1) | 32 | | (C2xC8).404D4 | 128,884 |
(C2×C8).405D4 = C2×C8○D8 | central extension (φ=1) | 32 | | (C2xC8).405D4 | 128,1685 |