# Extensions 1→N→G→Q→1 with N=C2×SD32 and Q=C2

Direct product G=N×Q with N=C2×SD32 and Q=C2
dρLabelID
C22×SD3264C2^2xSD32128,2141

Semidirect products G=N:Q with N=C2×SD32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SD32)⋊1C2 = C162D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):1C2128,952
(C2×SD32)⋊2C2 = D4.5D8φ: C2/C1C2 ⊆ Out C2×SD32324(C2xSD32):2C2128,955
(C2×SD32)⋊3C2 = C163D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):3C2128,982
(C2×SD32)⋊4C2 = C2×C16⋊C22φ: C2/C1C2 ⊆ Out C2×SD3232(C2xSD32):4C2128,2144
(C2×SD32)⋊5C2 = C2×Q32⋊C2φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):5C2128,2145
(C2×SD32)⋊6C2 = D4○SD32φ: C2/C1C2 ⊆ Out C2×SD32324(C2xSD32):6C2128,2148
(C2×SD32)⋊7C2 = Q167D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):7C2128,917
(C2×SD32)⋊8C2 = D88D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):8C2128,918
(C2×SD32)⋊9C2 = D8.9D4φ: C2/C1C2 ⊆ Out C2×SD3232(C2xSD32):9C2128,919
(C2×SD32)⋊10C2 = D8.10D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):10C2128,921
(C2×SD32)⋊11C2 = Q16.D4φ: C2/C1C2 ⊆ Out C2×SD32324(C2xSD32):11C2128,925
(C2×SD32)⋊12C2 = D8.3D4φ: C2/C1C2 ⊆ Out C2×SD32324(C2xSD32):12C2128,926
(C2×SD32)⋊13C2 = Q162D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):13C2128,939
(C2×SD32)⋊14C2 = D8.5D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):14C2128,942
(C2×SD32)⋊15C2 = C168D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):15C2128,949
(C2×SD32)⋊16C2 = C165D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):16C2128,980
(C2×SD32)⋊17C2 = C8.21D8φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32):17C2128,981
(C2×SD32)⋊18C2 = C2×C4○D16φ: trivial image64(C2xSD32):18C2128,2143

Non-split extensions G=N.Q with N=C2×SD32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SD32).1C2 = SD323C4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32).1C2128,907
(C2×SD32).2C2 = C8.7D8φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32).2C2128,983
(C2×SD32).3C2 = D8.4D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32).3C2128,940
(C2×SD32).4C2 = Q16.5D4φ: C2/C1C2 ⊆ Out C2×SD3264(C2xSD32).4C2128,943
(C2×SD32).5C2 = C4×SD32φ: trivial image64(C2xSD32).5C2128,905

׿
×
𝔽