p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊8D4, Q16⋊8D4, C23.14D8, (C2×D16)⋊2C2, C8.62(C2×D4), C2.D16⋊9C2, C8⋊7D4⋊16C2, C22⋊C16⋊7C2, (C2×SD32)⋊8C2, (C2×C4).112D8, (C2×C8).172D4, C2.Q32⋊4C2, C4.18C22≀C2, C2.6(C4○D16), (C2×C16).1C22, C22.96(C2×D8), C4.10(C8⋊C22), C2.7(C16⋊C22), (C2×C8).510C23, C2.D8.2C22, (C22×C4).345D4, C2.26(C22⋊D8), (C2×D8).107C22, (C22×C8).172C22, (C2×Q16).107C22, (C2×C4○D8)⋊1C2, (C2×C4).778(C2×D4), SmallGroup(128,918)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊8D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=cac-1=dad=a-1, cbc-1=ab, dbd=a5b, dcd=c-1 >
Subgroups: 324 in 115 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, D8, SD16, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, D4⋊C4, C2.D8, C2×C16, D16, SD32, C4⋊D4, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C22⋊C16, C2.D16, C2.Q32, C8⋊7D4, C2×D16, C2×SD32, C2×C4○D8, D8⋊8D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C4○D16, C16⋊C22, D8⋊8D4
Character table of D8⋊8D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√-2 | √-2 | ζ1613+ζ1611 | ζ165+ζ163 | -ζ165+ζ163 | ζ167+ζ16 | -ζ1615+ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √-2 | -√-2 | ζ165+ζ163 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ1615+ζ169 | -ζ1615+ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √-2 | -√-2 | ζ167+ζ16 | ζ1615+ζ169 | ζ1615-ζ169 | ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√-2 | √-2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1615-ζ169 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√-2 | √-2 | ζ167+ζ16 | ζ1615+ζ169 | -ζ1615+ζ169 | ζ165+ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√-2 | √-2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ165-ζ163 | ζ1615+ζ169 | ζ1615-ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √-2 | -√-2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ165-ζ163 | ζ167+ζ16 | ζ1615-ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √-2 | -√-2 | ζ1615+ζ169 | ζ167+ζ16 | -ζ1615+ζ169 | ζ1613+ζ1611 | ζ165-ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 50)(2 49)(3 56)(4 55)(5 54)(6 53)(7 52)(8 51)(9 26)(10 25)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 45)(18 44)(19 43)(20 42)(21 41)(22 48)(23 47)(24 46)(33 59)(34 58)(35 57)(36 64)(37 63)(38 62)(39 61)(40 60)
(1 30 23 39)(2 29 24 38)(3 28 17 37)(4 27 18 36)(5 26 19 35)(6 25 20 34)(7 32 21 33)(8 31 22 40)(9 42 57 53)(10 41 58 52)(11 48 59 51)(12 47 60 50)(13 46 61 49)(14 45 62 56)(15 44 63 55)(16 43 64 54)
(2 8)(3 7)(4 6)(9 60)(10 59)(11 58)(12 57)(13 64)(14 63)(15 62)(16 61)(17 21)(18 20)(22 24)(25 36)(26 35)(27 34)(28 33)(29 40)(30 39)(31 38)(32 37)(41 48)(42 47)(43 46)(44 45)(49 54)(50 53)(51 52)(55 56)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,50)(2,49)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,26)(10,25)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,45)(18,44)(19,43)(20,42)(21,41)(22,48)(23,47)(24,46)(33,59)(34,58)(35,57)(36,64)(37,63)(38,62)(39,61)(40,60), (1,30,23,39)(2,29,24,38)(3,28,17,37)(4,27,18,36)(5,26,19,35)(6,25,20,34)(7,32,21,33)(8,31,22,40)(9,42,57,53)(10,41,58,52)(11,48,59,51)(12,47,60,50)(13,46,61,49)(14,45,62,56)(15,44,63,55)(16,43,64,54), (2,8)(3,7)(4,6)(9,60)(10,59)(11,58)(12,57)(13,64)(14,63)(15,62)(16,61)(17,21)(18,20)(22,24)(25,36)(26,35)(27,34)(28,33)(29,40)(30,39)(31,38)(32,37)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,50)(2,49)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,26)(10,25)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,45)(18,44)(19,43)(20,42)(21,41)(22,48)(23,47)(24,46)(33,59)(34,58)(35,57)(36,64)(37,63)(38,62)(39,61)(40,60), (1,30,23,39)(2,29,24,38)(3,28,17,37)(4,27,18,36)(5,26,19,35)(6,25,20,34)(7,32,21,33)(8,31,22,40)(9,42,57,53)(10,41,58,52)(11,48,59,51)(12,47,60,50)(13,46,61,49)(14,45,62,56)(15,44,63,55)(16,43,64,54), (2,8)(3,7)(4,6)(9,60)(10,59)(11,58)(12,57)(13,64)(14,63)(15,62)(16,61)(17,21)(18,20)(22,24)(25,36)(26,35)(27,34)(28,33)(29,40)(30,39)(31,38)(32,37)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,50),(2,49),(3,56),(4,55),(5,54),(6,53),(7,52),(8,51),(9,26),(10,25),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,45),(18,44),(19,43),(20,42),(21,41),(22,48),(23,47),(24,46),(33,59),(34,58),(35,57),(36,64),(37,63),(38,62),(39,61),(40,60)], [(1,30,23,39),(2,29,24,38),(3,28,17,37),(4,27,18,36),(5,26,19,35),(6,25,20,34),(7,32,21,33),(8,31,22,40),(9,42,57,53),(10,41,58,52),(11,48,59,51),(12,47,60,50),(13,46,61,49),(14,45,62,56),(15,44,63,55),(16,43,64,54)], [(2,8),(3,7),(4,6),(9,60),(10,59),(11,58),(12,57),(13,64),(14,63),(15,62),(16,61),(17,21),(18,20),(22,24),(25,36),(26,35),(27,34),(28,33),(29,40),(30,39),(31,38),(32,37),(41,48),(42,47),(43,46),(44,45),(49,54),(50,53),(51,52),(55,56)]])
Matrix representation of D8⋊8D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 14 | 14 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 11 | 4 |
0 | 0 | 4 | 6 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,14,14,0,0,3,14],[0,16,0,0,16,0,0,0,0,0,11,4,0,0,4,6],[0,16,0,0,1,0,0,0,0,0,0,4,0,0,4,0],[16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,16] >;
D8⋊8D4 in GAP, Magma, Sage, TeX
D_8\rtimes_8D_4
% in TeX
G:=Group("D8:8D4");
// GroupNames label
G:=SmallGroup(128,918);
// by ID
G=gap.SmallGroup(128,918);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,352,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a*b,d*b*d=a^5*b,d*c*d=c^-1>;
// generators/relations
Export