p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.10D4, Q16.9D4, C23.15D8, (C2×Q32)⋊2C2, C8.65(C2×D4), C2.D16⋊5C2, C22⋊C16⋊8C2, (C2×C8).173D4, (C2×C4).113D8, C2.Q32⋊9C2, C4.21C22≀C2, (C2×SD32)⋊10C2, C2.7(C4○D16), C22.99(C2×D8), C8.18D4⋊16C2, C4.13(C8⋊C22), C2.D8.4C22, (C2×C8).513C23, (C2×C16).37C22, C2.8(Q32⋊C2), (C22×C4).348D4, C2.29(C22⋊D8), (C2×D8).109C22, (C22×C8).173C22, (C2×Q16).108C22, (C2×C4○D8).5C2, (C2×C4).781(C2×D4), SmallGroup(128,921)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8.10D4
G = < a,b,c,d | a8=b2=c4=1, d2=a4, bab=cac-1=dad-1=a-1, cbc-1=dbd-1=a5b, dcd-1=c-1 >
Subgroups: 276 in 110 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, D8, SD16, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Q8⋊C4, C2.D8, C2×C16, SD32, Q32, C22⋊Q8, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C22⋊C16, C2.D16, C2.Q32, C8.18D4, C2×SD32, C2×Q32, C2×C4○D8, D8.10D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C4○D16, Q32⋊C2, D8.10D4
Character table of D8.10D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | -ζ165+ζ163 | complex lifted from C4○D16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | ζ1613+ζ1611 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | -ζ165+ζ163 | complex lifted from C4○D16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | ζ1613+ζ1611 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ165-ζ163 | complex lifted from C4○D16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | ζ165+ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ165-ζ163 | complex lifted from C4○D16 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | -ζ167+ζ16 | complex lifted from C4○D16 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | ζ1615+ζ169 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | -ζ167+ζ16 | complex lifted from C4○D16 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | ζ1615+ζ169 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167-ζ16 | complex lifted from C4○D16 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | ζ167+ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167-ζ16 | complex lifted from C4○D16 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 13)(10 12)(14 16)(17 20)(18 19)(21 24)(22 23)(25 30)(26 29)(27 28)(31 32)(33 40)(34 39)(35 38)(36 37)(41 45)(42 44)(46 48)(49 51)(52 56)(53 55)(57 61)(58 60)(62 64)
(1 16 19 60)(2 15 20 59)(3 14 21 58)(4 13 22 57)(5 12 23 64)(6 11 24 63)(7 10 17 62)(8 9 18 61)(25 50 38 43)(26 49 39 42)(27 56 40 41)(28 55 33 48)(29 54 34 47)(30 53 35 46)(31 52 36 45)(32 51 37 44)
(1 48 5 44)(2 47 6 43)(3 46 7 42)(4 45 8 41)(9 40 13 36)(10 39 14 35)(11 38 15 34)(12 37 16 33)(17 49 21 53)(18 56 22 52)(19 55 23 51)(20 54 24 50)(25 59 29 63)(26 58 30 62)(27 57 31 61)(28 64 32 60)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,30)(26,29)(27,28)(31,32)(33,40)(34,39)(35,38)(36,37)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,61)(58,60)(62,64), (1,16,19,60)(2,15,20,59)(3,14,21,58)(4,13,22,57)(5,12,23,64)(6,11,24,63)(7,10,17,62)(8,9,18,61)(25,50,38,43)(26,49,39,42)(27,56,40,41)(28,55,33,48)(29,54,34,47)(30,53,35,46)(31,52,36,45)(32,51,37,44), (1,48,5,44)(2,47,6,43)(3,46,7,42)(4,45,8,41)(9,40,13,36)(10,39,14,35)(11,38,15,34)(12,37,16,33)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,30)(26,29)(27,28)(31,32)(33,40)(34,39)(35,38)(36,37)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,61)(58,60)(62,64), (1,16,19,60)(2,15,20,59)(3,14,21,58)(4,13,22,57)(5,12,23,64)(6,11,24,63)(7,10,17,62)(8,9,18,61)(25,50,38,43)(26,49,39,42)(27,56,40,41)(28,55,33,48)(29,54,34,47)(30,53,35,46)(31,52,36,45)(32,51,37,44), (1,48,5,44)(2,47,6,43)(3,46,7,42)(4,45,8,41)(9,40,13,36)(10,39,14,35)(11,38,15,34)(12,37,16,33)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,13),(10,12),(14,16),(17,20),(18,19),(21,24),(22,23),(25,30),(26,29),(27,28),(31,32),(33,40),(34,39),(35,38),(36,37),(41,45),(42,44),(46,48),(49,51),(52,56),(53,55),(57,61),(58,60),(62,64)], [(1,16,19,60),(2,15,20,59),(3,14,21,58),(4,13,22,57),(5,12,23,64),(6,11,24,63),(7,10,17,62),(8,9,18,61),(25,50,38,43),(26,49,39,42),(27,56,40,41),(28,55,33,48),(29,54,34,47),(30,53,35,46),(31,52,36,45),(32,51,37,44)], [(1,48,5,44),(2,47,6,43),(3,46,7,42),(4,45,8,41),(9,40,13,36),(10,39,14,35),(11,38,15,34),(12,37,16,33),(17,49,21,53),(18,56,22,52),(19,55,23,51),(20,54,24,50),(25,59,29,63),(26,58,30,62),(27,57,31,61),(28,64,32,60)]])
Matrix representation of D8.10D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 3 | 11 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 14 | 0 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 10 | 5 |
0 | 0 | 4 | 7 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 11 | 14 |
0 | 0 | 1 | 6 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,3,0,0,11,11],[16,0,0,0,0,1,0,0,0,0,0,14,0,0,11,0],[0,16,0,0,1,0,0,0,0,0,10,4,0,0,5,7],[0,1,0,0,1,0,0,0,0,0,11,1,0,0,14,6] >;
D8.10D4 in GAP, Magma, Sage, TeX
D_8._{10}D_4
% in TeX
G:=Group("D8.10D4");
// GroupNames label
G:=SmallGroup(128,921);
// by ID
G=gap.SmallGroup(128,921);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,422,352,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=a^4,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export