direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×C4○D16, D16⋊7C22, C8.12C24, Q32⋊6C22, D8.2C23, C23.29D8, C16.13C23, SD32⋊6C22, Q16.2C23, (C2×C4)○D16, C4○(C2×D16), C4○(C2×Q32), (C2×C4)○Q32, C4○(C2×SD32), (C2×C4)○SD32, C4○(C4○D16), (C2×C4).97D8, C4.95(C2×D8), C8.57(C2×D4), (C2×D16)⋊14C2, (C2×Q32)⋊14C2, (C2×C8).272D4, C4○D8⋊5C22, C22.3(C2×D8), (C22×C16)⋊10C2, (C2×C16)⋊19C22, (C2×SD32)⋊18C2, C2.27(C22×D8), C4.18(C22×D4), (C2×C8).585C23, (C22×C4).624D4, (C2×D8).151C22, (C22×C8).560C22, (C2×Q16).147C22, (C2×C4)○(C2×D16), (C2×C4)○(C2×Q32), (C2×C4)○(C2×SD32), (C2×C4○D8)⋊15C2, (C2×C4).875(C2×D4), SmallGroup(128,2143)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4○D16
G = < a,b,c,d | a2=b4=d2=1, c8=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c7 >
Subgroups: 404 in 184 conjugacy classes, 92 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C2×C8, C2×C8, D8, D8, SD16, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C16, C2×C16, D16, SD32, Q32, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C4○D8, C2×C4○D4, C22×C16, C2×D16, C2×SD32, C2×Q32, C4○D16, C2×C4○D8, C2×C4○D16
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C24, C2×D8, C22×D4, C4○D16, C22×D8, C2×C4○D16
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)
(1 18 9 26)(2 19 10 27)(3 20 11 28)(4 21 12 29)(5 22 13 30)(6 23 14 31)(7 24 15 32)(8 25 16 17)(33 58 41 50)(34 59 42 51)(35 60 43 52)(36 61 44 53)(37 62 45 54)(38 63 46 55)(39 64 47 56)(40 49 48 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 19)(20 32)(21 31)(22 30)(23 29)(24 28)(25 27)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)(49 51)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)
G:=sub<Sym(64)| (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,18,9,26)(2,19,10,27)(3,20,11,28)(4,21,12,29)(5,22,13,30)(6,23,14,31)(7,24,15,32)(8,25,16,17)(33,58,41,50)(34,59,42,51)(35,60,43,52)(36,61,44,53)(37,62,45,54)(38,63,46,55)(39,64,47,56)(40,49,48,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,19)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(49,51)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)>;
G:=Group( (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,18,9,26)(2,19,10,27)(3,20,11,28)(4,21,12,29)(5,22,13,30)(6,23,14,31)(7,24,15,32)(8,25,16,17)(33,58,41,50)(34,59,42,51)(35,60,43,52)(36,61,44,53)(37,62,45,54)(38,63,46,55)(39,64,47,56)(40,49,48,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,19)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(49,51)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59) );
G=PermutationGroup([[(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39)], [(1,18,9,26),(2,19,10,27),(3,20,11,28),(4,21,12,29),(5,22,13,30),(6,23,14,31),(7,24,15,32),(8,25,16,17),(33,58,41,50),(34,59,42,51),(35,60,43,52),(36,61,44,53),(37,62,45,54),(38,63,46,55),(39,64,47,56),(40,49,48,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,19),(20,32),(21,31),(22,30),(23,29),(24,28),(25,27),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42),(49,51),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | ··· | 2 | 2 | ··· | 2 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D8 | D8 | C4○D16 |
kernel | C2×C4○D16 | C22×C16 | C2×D16 | C2×SD32 | C2×Q32 | C4○D16 | C2×C4○D8 | C2×C8 | C22×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 1 | 1 | 2 | 1 | 8 | 2 | 3 | 1 | 6 | 2 | 16 |
Matrix representation of C2×C4○D16 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
16 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
16 | 0 | 0 |
0 | 7 | 12 |
0 | 11 | 2 |
16 | 0 | 0 |
0 | 1 | 0 |
0 | 1 | 16 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[16,0,0,0,4,0,0,0,4],[16,0,0,0,7,11,0,12,2],[16,0,0,0,1,1,0,0,16] >;
C2×C4○D16 in GAP, Magma, Sage, TeX
C_2\times C_4\circ D_{16}
% in TeX
G:=Group("C2xC4oD16");
// GroupNames label
G:=SmallGroup(128,2143);
// by ID
G=gap.SmallGroup(128,2143);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,-2,-2,253,352,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=d^2=1,c^8=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^7>;
// generators/relations