Copied to
clipboard

G = D4○SD32order 128 = 27

Central product of D4 and SD32

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D4SD32, Q8SD32, D4.13D8, Q8.13D8, D166C22, C8.17C24, C16.4C23, Q325C22, D8.6C23, SD325C22, Q16.6C23, M4(2).22D4, M5(2)⋊9C22, D4○D86C2, Q8○D85C2, D4○C164C2, C4○D165C2, C4.50(C2×D8), C8.16(C2×D4), C16⋊C226C2, (C2×C16)⋊6C22, C4○D4.36D4, (C2×SD32)⋊6C2, Q32⋊C25C2, C4○D82C22, C22.7(C2×D8), C2.32(C22×D8), C4.23(C22×D4), (C2×C8).295C23, (C2×Q16)⋊34C22, C8○D4.13C22, (C2×D8).98C22, (C2×C4).185(C2×D4), SmallGroup(128,2148)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — D4○SD32
C1C2C4C8C2×C8C8○D4D4○D8 — D4○SD32
C1C2C4C8 — D4○SD32
C1C2C4○D4C8○D4 — D4○SD32
C1C2C2C2C2C4C4C8 — D4○SD32

Generators and relations for D4○SD32
 G = < a,b,c,d | a4=d2=1, b2=c8=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c7 >

Subgroups: 416 in 180 conjugacy classes, 90 normal (15 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C16, C16, C2×C8, M4(2), D8, D8, D8, SD16, Q16, Q16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, C2×C16, M5(2), D16, SD32, SD32, Q32, C8○D4, C2×D8, C2×Q16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, D4○C16, C2×SD32, C4○D16, C16⋊C22, Q32⋊C2, D4○D8, Q8○D8, D4○SD32
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C24, C2×D8, C22×D4, C22×D8, D4○SD32

Smallest permutation representation of D4○SD32
On 32 points
Generators in S32
(1 13 9 5)(2 14 10 6)(3 15 11 7)(4 16 12 8)(17 21 25 29)(18 22 26 30)(19 23 27 31)(20 24 28 32)
(1 26 9 18)(2 27 10 19)(3 28 11 20)(4 29 12 21)(5 30 13 22)(6 31 14 23)(7 32 15 24)(8 17 16 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 27)(2 18)(3 25)(4 32)(5 23)(6 30)(7 21)(8 28)(9 19)(10 26)(11 17)(12 24)(13 31)(14 22)(15 29)(16 20)

G:=sub<Sym(32)| (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,26,9,18)(2,27,10,19)(3,28,11,20)(4,29,12,21)(5,30,13,22)(6,31,14,23)(7,32,15,24)(8,17,16,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20)>;

G:=Group( (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,26,9,18)(2,27,10,19)(3,28,11,20)(4,29,12,21)(5,30,13,22)(6,31,14,23)(7,32,15,24)(8,17,16,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20) );

G=PermutationGroup([[(1,13,9,5),(2,14,10,6),(3,15,11,7),(4,16,12,8),(17,21,25,29),(18,22,26,30),(19,23,27,31),(20,24,28,32)], [(1,26,9,18),(2,27,10,19),(3,28,11,20),(4,29,12,21),(5,30,13,22),(6,31,14,23),(7,32,15,24),(8,17,16,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,27),(2,18),(3,25),(4,32),(5,23),(6,30),(7,21),(8,28),(9,19),(10,26),(11,17),(12,24),(13,31),(14,22),(15,29),(16,20)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H8A8B8C8D8E16A16B16C16D16E···16J
order12222222244444444888881616161616···16
size112228888222288882244422224···4

32 irreducible representations

dim1111111122224
type++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D8D8D4○SD32
kernelD4○SD32D4○C16C2×SD32C4○D16C16⋊C22Q32⋊C2D4○D8Q8○D8M4(2)C4○D4D4Q8C1
# reps1133331131624

Matrix representation of D4○SD32 in GL4(𝔽7) generated by

0651
3056
3361
1631
,
4221
1413
0455
2411
,
4051
1421
1615
5510
,
4566
4322
2110
5656
G:=sub<GL(4,GF(7))| [0,3,3,1,6,0,3,6,5,5,6,3,1,6,1,1],[4,1,0,2,2,4,4,4,2,1,5,1,1,3,5,1],[4,1,1,5,0,4,6,5,5,2,1,1,1,1,5,0],[4,4,2,5,5,3,1,6,6,2,1,5,6,2,0,6] >;

D4○SD32 in GAP, Magma, Sage, TeX

D_4\circ {\rm SD}_{32}
% in TeX

G:=Group("D4oSD32");
// GroupNames label

G:=SmallGroup(128,2148);
// by ID

G=gap.SmallGroup(128,2148);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,-2,-2,448,253,521,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=d^2=1,b^2=c^8=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^7>;
// generators/relations

׿
×
𝔽