p-group, metabelian, nilpotent (class 4), monomial
Aliases: C16⋊3D4, C8.6D8, C42.156D4, C16⋊5C4⋊4C2, C8.43(C2×D4), (C2×C4).48D8, C4.11(C2×D8), (C2×D16)⋊10C2, C8⋊4D4⋊16C2, (C2×SD32)⋊3C2, (C2×C8).138D4, C4.5(C4⋊1D4), C8.12D4⋊13C2, C2.16(C8⋊4D4), (C2×C8).548C23, (C2×C16).29C22, (C4×C8).170C22, (C2×D8).19C22, C22.134(C2×D8), C2.22(C16⋊C22), (C2×Q16).20C22, (C2×C4).816(C2×D4), SmallGroup(128,982)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊3D4
G = < a,b,c | a16=b4=c2=1, bab-1=a9, cac=a-1, cbc=b-1 >
Subgroups: 328 in 99 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C22⋊C4, C2×C8, D8, SD16, Q16, C2×D4, C2×Q8, C4×C8, C2×C16, D16, SD32, C4.4D4, C4⋊1D4, C2×D8, C2×D8, C2×D8, C2×SD16, C2×Q16, C16⋊5C4, C8⋊4D4, C8.12D4, C2×D16, C2×SD32, C16⋊3D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4⋊1D4, C2×D8, C8⋊4D4, C16⋊C22, C16⋊3D4
Character table of C16⋊3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 16 | 16 | 16 | 2 | 2 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 31 48 64)(2 24 33 57)(3 17 34 50)(4 26 35 59)(5 19 36 52)(6 28 37 61)(7 21 38 54)(8 30 39 63)(9 23 40 56)(10 32 41 49)(11 25 42 58)(12 18 43 51)(13 27 44 60)(14 20 45 53)(15 29 46 62)(16 22 47 55)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 48)(9 47)(10 46)(11 45)(12 44)(13 43)(14 42)(15 41)(16 40)(17 28)(18 27)(19 26)(20 25)(21 24)(22 23)(29 32)(30 31)(49 62)(50 61)(51 60)(52 59)(53 58)(54 57)(55 56)(63 64)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,31,48,64)(2,24,33,57)(3,17,34,50)(4,26,35,59)(5,19,36,52)(6,28,37,61)(7,21,38,54)(8,30,39,63)(9,23,40,56)(10,32,41,49)(11,25,42,58)(12,18,43,51)(13,27,44,60)(14,20,45,53)(15,29,46,62)(16,22,47,55), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(29,32)(30,31)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,56)(63,64)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,31,48,64)(2,24,33,57)(3,17,34,50)(4,26,35,59)(5,19,36,52)(6,28,37,61)(7,21,38,54)(8,30,39,63)(9,23,40,56)(10,32,41,49)(11,25,42,58)(12,18,43,51)(13,27,44,60)(14,20,45,53)(15,29,46,62)(16,22,47,55), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(29,32)(30,31)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,56)(63,64) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,31,48,64),(2,24,33,57),(3,17,34,50),(4,26,35,59),(5,19,36,52),(6,28,37,61),(7,21,38,54),(8,30,39,63),(9,23,40,56),(10,32,41,49),(11,25,42,58),(12,18,43,51),(13,27,44,60),(14,20,45,53),(15,29,46,62),(16,22,47,55)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,48),(9,47),(10,46),(11,45),(12,44),(13,43),(14,42),(15,41),(16,40),(17,28),(18,27),(19,26),(20,25),(21,24),(22,23),(29,32),(30,31),(49,62),(50,61),(51,60),(52,59),(53,58),(54,57),(55,56),(63,64)]])
Matrix representation of C16⋊3D4 ►in GL6(𝔽17)
1 | 2 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 12 | 5 | 16 |
0 | 0 | 5 | 16 | 1 | 5 |
0 | 0 | 12 | 1 | 1 | 5 |
0 | 0 | 16 | 12 | 12 | 1 |
1 | 2 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
16 | 15 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 5 | 12 | 1 |
0 | 0 | 5 | 16 | 1 | 5 |
0 | 0 | 12 | 1 | 1 | 5 |
0 | 0 | 1 | 5 | 5 | 16 |
G:=sub<GL(6,GF(17))| [1,16,0,0,0,0,2,16,0,0,0,0,0,0,16,5,12,16,0,0,12,16,1,12,0,0,5,1,1,12,0,0,16,5,5,1],[1,16,0,0,0,0,2,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,15,1,0,0,0,0,0,0,1,5,12,1,0,0,5,16,1,5,0,0,12,1,1,5,0,0,1,5,5,16] >;
C16⋊3D4 in GAP, Magma, Sage, TeX
C_{16}\rtimes_3D_4
% in TeX
G:=Group("C16:3D4");
// GroupNames label
G:=SmallGroup(128,982);
// by ID
G=gap.SmallGroup(128,982);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,288,422,723,100,1123,360,4037,124]);
// Polycyclic
G:=Group<a,b,c|a^16=b^4=c^2=1,b*a*b^-1=a^9,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export