p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.9D4, C22⋊2SD32, C23.46D8, (C2×C8).63D4, C8.63(C2×D4), (C2×C4).32D8, (C2×C16)⋊7C22, (C2×SD32)⋊9C2, C2.D16⋊10C2, C2.6(C2×SD32), C22⋊C16⋊11C2, C2.D8⋊2C22, C4.19C22≀C2, C8.18D4⋊1C2, (C2×Q16)⋊1C22, (C22×D8).7C2, C22.97(C2×D8), C4.11(C8⋊C22), C2.8(C16⋊C22), (C2×C8).511C23, (C22×C4).346D4, C2.27(C22⋊D8), (C2×D8).108C22, (C22×C8).127C22, (C2×C4).779(C2×D4), 2-Sylow(CO-(4,7)), SmallGroup(128,919)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8.9D4
G = < a,b,c,d | a8=b2=1, c4=a2, d2=a4, bab=dad-1=a-1, ac=ca, cbc-1=ab, dbd-1=a5b, dcd-1=a2c3 >
Subgroups: 404 in 128 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, D8, Q16, C22×C4, C2×D4, C2×Q8, C24, Q8⋊C4, C2.D8, C2×C16, SD32, C22⋊Q8, C22×C8, C2×D8, C2×D8, C2×Q16, C22×D4, C22⋊C16, C2.D16, C8.18D4, C2×SD32, C22×D8, D8.9D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, SD32, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C2×SD32, C16⋊C22, D8.9D4
Character table of D8.9D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | complex lifted from SD32 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | complex lifted from SD32 |
ρ23 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | complex lifted from SD32 |
ρ24 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | complex lifted from SD32 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ26 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | complex lifted from SD32 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
(1 20 5 24 9 28 13 32)(2 21 6 25 10 29 14 17)(3 22 7 26 11 30 15 18)(4 23 8 27 12 31 16 19)
(1 22)(2 4)(3 20)(5 18)(6 16)(7 32)(8 14)(9 30)(10 12)(11 28)(13 26)(15 24)(17 23)(19 21)(25 31)(27 29)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 17 9 25)(2 24 10 32)(3 31 11 23)(4 22 12 30)(5 29 13 21)(6 20 14 28)(7 27 15 19)(8 18 16 26)
G:=sub<Sym(32)| (1,20,5,24,9,28,13,32)(2,21,6,25,10,29,14,17)(3,22,7,26,11,30,15,18)(4,23,8,27,12,31,16,19), (1,22)(2,4)(3,20)(5,18)(6,16)(7,32)(8,14)(9,30)(10,12)(11,28)(13,26)(15,24)(17,23)(19,21)(25,31)(27,29), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17,9,25)(2,24,10,32)(3,31,11,23)(4,22,12,30)(5,29,13,21)(6,20,14,28)(7,27,15,19)(8,18,16,26)>;
G:=Group( (1,20,5,24,9,28,13,32)(2,21,6,25,10,29,14,17)(3,22,7,26,11,30,15,18)(4,23,8,27,12,31,16,19), (1,22)(2,4)(3,20)(5,18)(6,16)(7,32)(8,14)(9,30)(10,12)(11,28)(13,26)(15,24)(17,23)(19,21)(25,31)(27,29), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17,9,25)(2,24,10,32)(3,31,11,23)(4,22,12,30)(5,29,13,21)(6,20,14,28)(7,27,15,19)(8,18,16,26) );
G=PermutationGroup([[(1,20,5,24,9,28,13,32),(2,21,6,25,10,29,14,17),(3,22,7,26,11,30,15,18),(4,23,8,27,12,31,16,19)], [(1,22),(2,4),(3,20),(5,18),(6,16),(7,32),(8,14),(9,30),(10,12),(11,28),(13,26),(15,24),(17,23),(19,21),(25,31),(27,29)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,17,9,25),(2,24,10,32),(3,31,11,23),(4,22,12,30),(5,29,13,21),(6,20,14,28),(7,27,15,19),(8,18,16,26)]])
Matrix representation of D8.9D4 ►in GL4(𝔽17) generated by
0 | 6 | 0 | 0 |
14 | 6 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
11 | 15 | 0 | 0 |
1 | 9 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 16 | 0 |
11 | 15 | 0 | 0 |
10 | 6 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [0,14,0,0,6,6,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,2,1,0,0,0,0,16,0,0,0,0,1],[11,1,0,0,15,9,0,0,0,0,0,16,0,0,16,0],[11,10,0,0,15,6,0,0,0,0,0,1,0,0,1,0] >;
D8.9D4 in GAP, Magma, Sage, TeX
D_8._9D_4
% in TeX
G:=Group("D8.9D4");
// GroupNames label
G:=SmallGroup(128,919);
// by ID
G=gap.SmallGroup(128,919);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,422,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^4=a^2,d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a*b,d*b*d^-1=a^5*b,d*c*d^-1=a^2*c^3>;
// generators/relations
Export