p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16⋊7D4, C22⋊3SD32, C23.45D8, (C2×C8).62D4, (C2×C4).31D8, C8.61(C2×D4), (C2×SD32)⋊7C2, C8⋊7D4.3C2, C2.5(C2×SD32), C22⋊C16⋊10C2, C2.Q32⋊8C2, C4.17C22≀C2, C4.9(C8⋊C22), (C22×Q16)⋊4C2, (C2×D8).1C22, C22.95(C2×D8), (C2×C16).36C22, (C2×C8).509C23, C2.D8.1C22, C2.6(Q32⋊C2), (C22×C4).344D4, C2.25(C22⋊D8), (C22×C8).126C22, (C2×Q16).106C22, (C2×C4).777(C2×D4), SmallGroup(128,917)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16⋊7D4
G = < a,b,c,d | a8=c4=d2=1, b2=a4, bab-1=cac-1=dad=a-1, cbc-1=dbd=a-1b, dcd=c-1 >
Subgroups: 292 in 113 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, D4⋊C4, C2.D8, C2×C16, SD32, C4⋊D4, C22×C8, C2×D8, C2×Q16, C2×Q16, C22×Q8, C22⋊C16, C2.Q32, C8⋊7D4, C2×SD32, C22×Q16, Q16⋊7D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, SD32, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C2×SD32, Q32⋊C2, Q16⋊7D4
Character table of Q16⋊7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 16 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ25 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ26 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 58 5 62)(2 57 6 61)(3 64 7 60)(4 63 8 59)(9 22 13 18)(10 21 14 17)(11 20 15 24)(12 19 16 23)(25 52 29 56)(26 51 30 55)(27 50 31 54)(28 49 32 53)(33 46 37 42)(34 45 38 41)(35 44 39 48)(36 43 40 47)
(1 37 19 26)(2 36 20 25)(3 35 21 32)(4 34 22 31)(5 33 23 30)(6 40 24 29)(7 39 17 28)(8 38 18 27)(9 51 59 42)(10 50 60 41)(11 49 61 48)(12 56 62 47)(13 55 63 46)(14 54 64 45)(15 53 57 44)(16 52 58 43)
(2 8)(3 7)(4 6)(9 16)(10 15)(11 14)(12 13)(17 21)(18 20)(22 24)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)(31 40)(32 39)(41 53)(42 52)(43 51)(44 50)(45 49)(46 56)(47 55)(48 54)(57 60)(58 59)(61 64)(62 63)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,22,13,18)(10,21,14,17)(11,20,15,24)(12,19,16,23)(25,52,29,56)(26,51,30,55)(27,50,31,54)(28,49,32,53)(33,46,37,42)(34,45,38,41)(35,44,39,48)(36,43,40,47), (1,37,19,26)(2,36,20,25)(3,35,21,32)(4,34,22,31)(5,33,23,30)(6,40,24,29)(7,39,17,28)(8,38,18,27)(9,51,59,42)(10,50,60,41)(11,49,61,48)(12,56,62,47)(13,55,63,46)(14,54,64,45)(15,53,57,44)(16,52,58,43), (2,8)(3,7)(4,6)(9,16)(10,15)(11,14)(12,13)(17,21)(18,20)(22,24)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,40)(32,39)(41,53)(42,52)(43,51)(44,50)(45,49)(46,56)(47,55)(48,54)(57,60)(58,59)(61,64)(62,63)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,22,13,18)(10,21,14,17)(11,20,15,24)(12,19,16,23)(25,52,29,56)(26,51,30,55)(27,50,31,54)(28,49,32,53)(33,46,37,42)(34,45,38,41)(35,44,39,48)(36,43,40,47), (1,37,19,26)(2,36,20,25)(3,35,21,32)(4,34,22,31)(5,33,23,30)(6,40,24,29)(7,39,17,28)(8,38,18,27)(9,51,59,42)(10,50,60,41)(11,49,61,48)(12,56,62,47)(13,55,63,46)(14,54,64,45)(15,53,57,44)(16,52,58,43), (2,8)(3,7)(4,6)(9,16)(10,15)(11,14)(12,13)(17,21)(18,20)(22,24)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,40)(32,39)(41,53)(42,52)(43,51)(44,50)(45,49)(46,56)(47,55)(48,54)(57,60)(58,59)(61,64)(62,63) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,58,5,62),(2,57,6,61),(3,64,7,60),(4,63,8,59),(9,22,13,18),(10,21,14,17),(11,20,15,24),(12,19,16,23),(25,52,29,56),(26,51,30,55),(27,50,31,54),(28,49,32,53),(33,46,37,42),(34,45,38,41),(35,44,39,48),(36,43,40,47)], [(1,37,19,26),(2,36,20,25),(3,35,21,32),(4,34,22,31),(5,33,23,30),(6,40,24,29),(7,39,17,28),(8,38,18,27),(9,51,59,42),(10,50,60,41),(11,49,61,48),(12,56,62,47),(13,55,63,46),(14,54,64,45),(15,53,57,44),(16,52,58,43)], [(2,8),(3,7),(4,6),(9,16),(10,15),(11,14),(12,13),(17,21),(18,20),(22,24),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33),(31,40),(32,39),(41,53),(42,52),(43,51),(44,50),(45,49),(46,56),(47,55),(48,54),(57,60),(58,59),(61,64),(62,63)]])
Matrix representation of Q16⋊7D4 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
7 | 16 | 0 | 0 |
16 | 10 | 0 | 0 |
0 | 0 | 4 | 2 |
0 | 0 | 1 | 13 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 15 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 13 | 16 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,16,0,0,0,0,16],[7,16,0,0,16,10,0,0,0,0,4,1,0,0,2,13],[1,0,0,0,0,16,0,0,0,0,13,0,0,0,15,4],[1,0,0,0,0,16,0,0,0,0,1,13,0,0,0,16] >;
Q16⋊7D4 in GAP, Magma, Sage, TeX
Q_{16}\rtimes_7D_4
% in TeX
G:=Group("Q16:7D4");
// GroupNames label
G:=SmallGroup(128,917);
// by ID
G=gap.SmallGroup(128,917);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,456,422,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^4=d^2=1,b^2=a^4,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export