direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×SD32, C4.7D8, C8.10D4, C16⋊3C22, C8.7C23, Q16⋊1C22, D8.1C22, C22.15D8, (C2×C16)⋊7C2, C4.8(C2×D4), (C2×Q16)⋊6C2, (C2×D8).4C2, C2.13(C2×D8), (C2×C4).82D4, (C2×C8).83C22, 2-Sylow(GL(3,7)), SmallGroup(64,187)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×SD32
G = < a,b,c | a2=b16=c2=1, ab=ba, ac=ca, cbc=b7 >
Character table of C2×SD32
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
(1 32)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 24)(2 31)(3 22)(4 29)(5 20)(6 27)(7 18)(8 25)(9 32)(10 23)(11 30)(12 21)(13 28)(14 19)(15 26)(16 17)
G:=sub<Sym(32)| (1,32)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,24)(2,31)(3,22)(4,29)(5,20)(6,27)(7,18)(8,25)(9,32)(10,23)(11,30)(12,21)(13,28)(14,19)(15,26)(16,17)>;
G:=Group( (1,32)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,24)(2,31)(3,22)(4,29)(5,20)(6,27)(7,18)(8,25)(9,32)(10,23)(11,30)(12,21)(13,28)(14,19)(15,26)(16,17) );
G=PermutationGroup([[(1,32),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,24),(2,31),(3,22),(4,29),(5,20),(6,27),(7,18),(8,25),(9,32),(10,23),(11,30),(12,21),(13,28),(14,19),(15,26),(16,17)]])
C2×SD32 is a maximal subgroup of
SD32⋊3C4 Q16⋊7D4 D8⋊8D4 D8.9D4 D8.10D4 Q16.D4 D8.3D4 Q16⋊2D4 D8.4D4 D8.5D4 Q16.5D4 C16⋊8D4 C16⋊2D4 D4.5D8 C16⋊5D4 C8.21D8 C16⋊3D4 C8.7D8 D4○SD32
C2×SD32 is a maximal quotient of
Q16⋊7D4 D8.9D4 Q16⋊2D4 D8.4D4 C16⋊8D4 Q16⋊Q8 D8⋊Q8 C23.49D8 C23.50D8 C4.4D16 C4.SD32 C16⋊5D4 C16⋊3Q8
Matrix representation of C2×SD32 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 11 | 14 |
0 | 0 | 10 | 8 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 16 | 1 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,1,0,0,0,0,0,11,10,0,0,14,8],[16,0,0,0,0,1,0,0,0,0,16,16,0,0,0,1] >;
C2×SD32 in GAP, Magma, Sage, TeX
C_2\times {\rm SD}_{32}
% in TeX
G:=Group("C2xSD32");
// GroupNames label
G:=SmallGroup(64,187);
// by ID
G=gap.SmallGroup(64,187);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,192,121,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^7>;
// generators/relations
Export
Subgroup lattice of C2×SD32 in TeX
Character table of C2×SD32 in TeX