p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.3D4, D4.10D8, Q8.10D8, Q16.11D4, M4(2).18D4, M5(2)⋊4C22, D4○D8.C2, D4.C8⋊3C2, C8.68(C2×D4), C4.39(C2×D8), (C2×C16)⋊8C22, C4○D4.11D4, Q32⋊C2⋊2C2, C4.26C22≀C2, (C2×SD32)⋊12C2, M5(2)⋊C2⋊2C2, D8.C4⋊4C2, D4.5D4⋊1C2, C8○D4.3C22, C4○D8.7C22, (C2×C8).233C23, C8.C4⋊2C22, (C2×Q16)⋊11C22, (C2×D8).46C22, C2.34(C22⋊D8), C22.6(C8⋊C22), (C2×C4).41(C2×D4), SmallGroup(128,926)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8.3D4
G = < a,b,c,d | a8=b2=1, c4=a6, d2=a4, bab=dad-1=a-1, cac-1=a5, cbc-1=a5b, dbd-1=ab, dcd-1=a6c3 >
Subgroups: 304 in 108 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C16, C2×C8, C2×C8, M4(2), M4(2), D8, D8, D8, SD16, Q16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, C4.10D4, C8.C4, C2×C16, M5(2), SD32, Q32, C8○D4, C2×D8, C2×D8, C2×Q16, C4○D8, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, D4.C8, D8.C4, M5(2)⋊C2, D4.5D4, C2×SD32, Q32⋊C2, D4○D8, D8.3D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, D8.3D4
Character table of D8.3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | 16E | 16F | |
size | 1 | 1 | 2 | 4 | 8 | 8 | 8 | 2 | 2 | 4 | 8 | 16 | 2 | 2 | 4 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | ζ167+ζ165+ζ163+ζ16 | ζ1613+ζ1611+ζ167+ζ16 | ζ1615+ζ1613+ζ1611+ζ169 | ζ1615+ζ169+ζ165+ζ163 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | ζ1615+ζ169+ζ165+ζ163 | ζ167+ζ165+ζ163+ζ16 | ζ1613+ζ1611+ζ167+ζ16 | ζ1615+ζ1613+ζ1611+ζ169 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | ζ1613+ζ1611+ζ167+ζ16 | ζ1615+ζ1613+ζ1611+ζ169 | ζ1615+ζ169+ζ165+ζ163 | ζ167+ζ165+ζ163+ζ16 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | ζ1615+ζ1613+ζ1611+ζ169 | ζ1615+ζ169+ζ165+ζ163 | ζ167+ζ165+ζ163+ζ16 | ζ1613+ζ1611+ζ167+ζ16 | 0 | 0 | complex faithful |
(1 20 13 32 9 28 5 24)(2 29 14 25 10 21 6 17)(3 22 15 18 11 30 7 26)(4 31 16 27 12 23 8 19)
(1 7)(2 23)(3 5)(4 21)(6 19)(8 17)(9 15)(10 31)(11 13)(12 29)(14 27)(16 25)(18 32)(20 30)(22 28)(24 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 2 9 10)(3 16 11 8)(4 7 12 15)(5 14 13 6)(17 28 25 20)(18 19 26 27)(21 24 29 32)(22 31 30 23)
G:=sub<Sym(32)| (1,20,13,32,9,28,5,24)(2,29,14,25,10,21,6,17)(3,22,15,18,11,30,7,26)(4,31,16,27,12,23,8,19), (1,7)(2,23)(3,5)(4,21)(6,19)(8,17)(9,15)(10,31)(11,13)(12,29)(14,27)(16,25)(18,32)(20,30)(22,28)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,2,9,10)(3,16,11,8)(4,7,12,15)(5,14,13,6)(17,28,25,20)(18,19,26,27)(21,24,29,32)(22,31,30,23)>;
G:=Group( (1,20,13,32,9,28,5,24)(2,29,14,25,10,21,6,17)(3,22,15,18,11,30,7,26)(4,31,16,27,12,23,8,19), (1,7)(2,23)(3,5)(4,21)(6,19)(8,17)(9,15)(10,31)(11,13)(12,29)(14,27)(16,25)(18,32)(20,30)(22,28)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,2,9,10)(3,16,11,8)(4,7,12,15)(5,14,13,6)(17,28,25,20)(18,19,26,27)(21,24,29,32)(22,31,30,23) );
G=PermutationGroup([[(1,20,13,32,9,28,5,24),(2,29,14,25,10,21,6,17),(3,22,15,18,11,30,7,26),(4,31,16,27,12,23,8,19)], [(1,7),(2,23),(3,5),(4,21),(6,19),(8,17),(9,15),(10,31),(11,13),(12,29),(14,27),(16,25),(18,32),(20,30),(22,28),(24,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,2,9,10),(3,16,11,8),(4,7,12,15),(5,14,13,6),(17,28,25,20),(18,19,26,27),(21,24,29,32),(22,31,30,23)]])
Matrix representation of D8.3D4 ►in GL4(𝔽7) generated by
2 | 2 | 2 | 4 |
1 | 4 | 3 | 6 |
1 | 0 | 6 | 2 |
5 | 4 | 3 | 2 |
5 | 4 | 4 | 6 |
6 | 3 | 4 | 6 |
6 | 6 | 0 | 2 |
2 | 0 | 1 | 6 |
3 | 2 | 6 | 1 |
3 | 6 | 3 | 4 |
5 | 4 | 0 | 1 |
2 | 0 | 2 | 5 |
3 | 5 | 3 | 2 |
1 | 4 | 4 | 2 |
1 | 6 | 3 | 6 |
5 | 5 | 2 | 4 |
G:=sub<GL(4,GF(7))| [2,1,1,5,2,4,0,4,2,3,6,3,4,6,2,2],[5,6,6,2,4,3,6,0,4,4,0,1,6,6,2,6],[3,3,5,2,2,6,4,0,6,3,0,2,1,4,1,5],[3,1,1,5,5,4,6,5,3,4,3,2,2,2,6,4] >;
D8.3D4 in GAP, Magma, Sage, TeX
D_8._3D_4
% in TeX
G:=Group("D8.3D4");
// GroupNames label
G:=SmallGroup(128,926);
// by ID
G=gap.SmallGroup(128,926);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,422,1123,570,360,2804,718,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^4=a^6,d^2=a^4,b*a*b=d*a*d^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^5*b,d*b*d^-1=a*b,d*c*d^-1=a^6*c^3>;
// generators/relations
Export