Copied to
clipboard

G = C42.298C23order 128 = 27

159th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.298C23, C4.1712+ 1+4, (C8×D4)⋊47C2, (C4×C8)⋊5C22, C89D442C2, C4⋊C892C22, C22≀C2.6C4, C4⋊D4.25C4, C24.88(C2×C4), (C22×C8)⋊6C22, C8⋊C432C22, C22⋊Q8.25C4, C22⋊C881C22, (C2×C4).674C24, (C2×C8).435C23, C22.7(C8○D4), (C4×D4).301C22, C23.41(C22×C4), C22.D4.9C4, (C2×M4(2))⋊48C22, (C22×C4).941C23, C22.198(C23×C4), (C23×C4).533C22, C42⋊C2.86C22, C42.7C2227C2, C22.19C24.13C2, C2.48(C22.11C24), C2.29(C2×C8○D4), C4⋊C4.168(C2×C4), (C2×C22⋊C8)⋊48C2, (C2×D4).183(C2×C4), C22⋊C4.43(C2×C4), (C2×C4).80(C22×C4), (C2×Q8).123(C2×C4), (C22×C8)⋊C233C2, (C22×C4).139(C2×C4), (C2×C4○D4).94C22, SmallGroup(128,1709)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.298C23
C1C2C4C2×C4C22×C4C23×C4C22.19C24 — C42.298C23
C1C22 — C42.298C23
C1C2×C4 — C42.298C23
C1C2C2C2×C4 — C42.298C23

Generators and relations for C42.298C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1b2, dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=ece=a2b2c, ede=b2d >

Subgroups: 348 in 211 conjugacy classes, 128 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×7], C4 [×2], C4 [×9], C22, C22 [×4], C22 [×17], C8 [×8], C2×C4 [×2], C2×C4 [×8], C2×C4 [×13], D4 [×11], Q8, C23, C23 [×4], C23 [×5], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×6], C2×C8 [×8], C2×C8 [×6], M4(2) [×2], C22×C4 [×2], C22×C4 [×6], C22×C4 [×2], C2×D4, C2×D4 [×6], C2×Q8, C4○D4 [×2], C24, C4×C8 [×2], C8⋊C4 [×2], C22⋊C8 [×12], C4⋊C8 [×4], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×2], C22×C8 [×6], C2×M4(2) [×2], C23×C4, C2×C4○D4, C2×C22⋊C8 [×2], (C22×C8)⋊C2 [×2], C42.7C22 [×2], C8×D4 [×4], C89D4 [×4], C22.19C24, C42.298C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, C8○D4 [×4], C23×C4, 2+ 1+4 [×2], C22.11C24, C2×C8○D4 [×2], C42.298C23

Smallest permutation representation of C42.298C23
On 32 points
Generators in S32
(1 23 27 10)(2 15 28 20)(3 17 29 12)(4 9 30 22)(5 19 31 14)(6 11 32 24)(7 21 25 16)(8 13 26 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 20)(3 12)(4 22)(5 14)(6 24)(7 16)(8 18)(9 30)(11 32)(13 26)(15 28)(17 29)(19 31)(21 25)(23 27)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 18)(11 20)(13 22)(15 24)(25 29)(27 31)

G:=sub<Sym(32)| (1,23,27,10)(2,15,28,20)(3,17,29,12)(4,9,30,22)(5,19,31,14)(6,11,32,24)(7,21,25,16)(8,13,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,20)(3,12)(4,22)(5,14)(6,24)(7,16)(8,18)(9,30)(11,32)(13,26)(15,28)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,18)(11,20)(13,22)(15,24)(25,29)(27,31)>;

G:=Group( (1,23,27,10)(2,15,28,20)(3,17,29,12)(4,9,30,22)(5,19,31,14)(6,11,32,24)(7,21,25,16)(8,13,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,20)(3,12)(4,22)(5,14)(6,24)(7,16)(8,18)(9,30)(11,32)(13,26)(15,28)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,18)(11,20)(13,22)(15,24)(25,29)(27,31) );

G=PermutationGroup([(1,23,27,10),(2,15,28,20),(3,17,29,12),(4,9,30,22),(5,19,31,14),(6,11,32,24),(7,21,25,16),(8,13,26,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,20),(3,12),(4,22),(5,14),(6,24),(7,16),(8,18),(9,30),(11,32),(13,26),(15,28),(17,29),(19,31),(21,25),(23,27)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,18),(11,20),(13,22),(15,24),(25,29),(27,31)])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I···4O8A···8P8Q···8X
order12222222222444444444···48···88···8
size11112222444111122224···42···24···4

50 irreducible representations

dim1111111111124
type++++++++
imageC1C2C2C2C2C2C2C4C4C4C4C8○D42+ 1+4
kernelC42.298C23C2×C22⋊C8(C22×C8)⋊C2C42.7C22C8×D4C89D4C22.19C24C22≀C2C4⋊D4C22⋊Q8C22.D4C22C4
# reps12224414444162

Matrix representation of C42.298C23 in GL4(𝔽17) generated by

11500
11600
0001
0010
,
4000
0400
0040
0004
,
2000
0200
0008
0090
,
11500
01600
0001
0010
,
16000
16100
00160
0001
G:=sub<GL(4,GF(17))| [1,1,0,0,15,16,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,2,0,0,0,0,0,9,0,0,8,0],[1,0,0,0,15,16,0,0,0,0,0,1,0,0,1,0],[16,16,0,0,0,1,0,0,0,0,16,0,0,0,0,1] >;

C42.298C23 in GAP, Magma, Sage, TeX

C_4^2._{298}C_2^3
% in TeX

G:=Group("C4^2.298C2^3");
// GroupNames label

G:=SmallGroup(128,1709);
// by ID

G=gap.SmallGroup(128,1709);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,891,675,1018,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽