Copied to
clipboard

G = C2×Q86D4order 128 = 27

Direct product of C2 and Q86D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×Q86D4, C23.24C24, C22.56C25, C42.555C23, C24.493C23, C22.1102+ 1+4, (C2×Q8)⋊43D4, Q811(C2×D4), (C4×Q8)⋊92C22, C2.23(D4×C23), (C4×D4)⋊104C22, C41D447C22, C4⋊D472C22, C4⋊C4.468C23, (C2×C4).598C24, C4.112(C22×D4), (C2×D4).452C23, C22⋊C4.83C23, (C2×Q8).485C23, (C2×C42).927C22, (C23×C4).596C22, C22.163(C22×D4), C2.17(C2×2+ 1+4), (C22×C4).1193C23, (C22×D4).422C22, (C22×Q8).514C22, Q82(C2×C4⋊C4), C4⋊C43(C2×Q8), (C2×C4×D4)⋊82C2, C43(C2×C4○D4), (C2×C4×Q8)⋊51C2, C4⋊C4(C22×Q8), (C2×C4)⋊20(C4○D4), (C2×C41D4)⋊25C2, (C2×C4⋊D4)⋊62C2, (C2×C4).1112(C2×D4), (C22×C4○D4)⋊19C2, (C2×C4○D4)⋊73C22, C2.28(C22×C4○D4), (C2×C4⋊C4).956C22, C22.158(C2×C4○D4), (C2×C22⋊C4).539C22, (C2×Q8)2(C2×C4⋊C4), (C2×C4⋊C4)(C22×Q8), SmallGroup(128,2199)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×Q86D4
C1C2C22C23C22×C4C23×C4C22×C4○D4 — C2×Q86D4
C1C22 — C2×Q86D4
C1C23 — C2×Q86D4
C1C22 — C2×Q86D4

Generators and relations for C2×Q86D4
 G = < a,b,c,d,e | a2=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=b-1, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 1436 in 868 conjugacy classes, 444 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C41D4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4×D4, C2×C4×Q8, C2×C4⋊D4, C2×C41D4, Q86D4, C22×C4○D4, C2×Q86D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C25, Q86D4, D4×C23, C22×C4○D4, C2×2+ 1+4, C2×Q86D4

Smallest permutation representation of C2×Q86D4
On 64 points
Generators in S64
(1 7)(2 8)(3 5)(4 6)(9 22)(10 23)(11 24)(12 21)(13 49)(14 50)(15 51)(16 52)(17 40)(18 37)(19 38)(20 39)(25 30)(26 31)(27 32)(28 29)(33 54)(34 55)(35 56)(36 53)(41 48)(42 45)(43 46)(44 47)(57 62)(58 63)(59 64)(60 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 3 19)(2 20 4 18)(5 38 7 40)(6 37 8 39)(9 26 11 28)(10 25 12 27)(13 35 15 33)(14 34 16 36)(21 32 23 30)(22 31 24 29)(41 62 43 64)(42 61 44 63)(45 60 47 58)(46 59 48 57)(49 56 51 54)(50 55 52 53)
(1 52 24 64)(2 51 21 63)(3 50 22 62)(4 49 23 61)(5 14 9 57)(6 13 10 60)(7 16 11 59)(8 15 12 58)(17 55 29 43)(18 54 30 42)(19 53 31 41)(20 56 32 44)(25 45 37 33)(26 48 38 36)(27 47 39 35)(28 46 40 34)
(1 47)(2 48)(3 45)(4 46)(5 42)(6 43)(7 44)(8 41)(9 54)(10 55)(11 56)(12 53)(13 29)(14 30)(15 31)(16 32)(17 60)(18 57)(19 58)(20 59)(21 36)(22 33)(23 34)(24 35)(25 50)(26 51)(27 52)(28 49)(37 62)(38 63)(39 64)(40 61)

G:=sub<Sym(64)| (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,49)(14,50)(15,51)(16,52)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,54)(34,55)(35,56)(36,53)(41,48)(42,45)(43,46)(44,47)(57,62)(58,63)(59,64)(60,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,3,19)(2,20,4,18)(5,38,7,40)(6,37,8,39)(9,26,11,28)(10,25,12,27)(13,35,15,33)(14,34,16,36)(21,32,23,30)(22,31,24,29)(41,62,43,64)(42,61,44,63)(45,60,47,58)(46,59,48,57)(49,56,51,54)(50,55,52,53), (1,52,24,64)(2,51,21,63)(3,50,22,62)(4,49,23,61)(5,14,9,57)(6,13,10,60)(7,16,11,59)(8,15,12,58)(17,55,29,43)(18,54,30,42)(19,53,31,41)(20,56,32,44)(25,45,37,33)(26,48,38,36)(27,47,39,35)(28,46,40,34), (1,47)(2,48)(3,45)(4,46)(5,42)(6,43)(7,44)(8,41)(9,54)(10,55)(11,56)(12,53)(13,29)(14,30)(15,31)(16,32)(17,60)(18,57)(19,58)(20,59)(21,36)(22,33)(23,34)(24,35)(25,50)(26,51)(27,52)(28,49)(37,62)(38,63)(39,64)(40,61)>;

G:=Group( (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,49)(14,50)(15,51)(16,52)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,54)(34,55)(35,56)(36,53)(41,48)(42,45)(43,46)(44,47)(57,62)(58,63)(59,64)(60,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,3,19)(2,20,4,18)(5,38,7,40)(6,37,8,39)(9,26,11,28)(10,25,12,27)(13,35,15,33)(14,34,16,36)(21,32,23,30)(22,31,24,29)(41,62,43,64)(42,61,44,63)(45,60,47,58)(46,59,48,57)(49,56,51,54)(50,55,52,53), (1,52,24,64)(2,51,21,63)(3,50,22,62)(4,49,23,61)(5,14,9,57)(6,13,10,60)(7,16,11,59)(8,15,12,58)(17,55,29,43)(18,54,30,42)(19,53,31,41)(20,56,32,44)(25,45,37,33)(26,48,38,36)(27,47,39,35)(28,46,40,34), (1,47)(2,48)(3,45)(4,46)(5,42)(6,43)(7,44)(8,41)(9,54)(10,55)(11,56)(12,53)(13,29)(14,30)(15,31)(16,32)(17,60)(18,57)(19,58)(20,59)(21,36)(22,33)(23,34)(24,35)(25,50)(26,51)(27,52)(28,49)(37,62)(38,63)(39,64)(40,61) );

G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,22),(10,23),(11,24),(12,21),(13,49),(14,50),(15,51),(16,52),(17,40),(18,37),(19,38),(20,39),(25,30),(26,31),(27,32),(28,29),(33,54),(34,55),(35,56),(36,53),(41,48),(42,45),(43,46),(44,47),(57,62),(58,63),(59,64),(60,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,3,19),(2,20,4,18),(5,38,7,40),(6,37,8,39),(9,26,11,28),(10,25,12,27),(13,35,15,33),(14,34,16,36),(21,32,23,30),(22,31,24,29),(41,62,43,64),(42,61,44,63),(45,60,47,58),(46,59,48,57),(49,56,51,54),(50,55,52,53)], [(1,52,24,64),(2,51,21,63),(3,50,22,62),(4,49,23,61),(5,14,9,57),(6,13,10,60),(7,16,11,59),(8,15,12,58),(17,55,29,43),(18,54,30,42),(19,53,31,41),(20,56,32,44),(25,45,37,33),(26,48,38,36),(27,47,39,35),(28,46,40,34)], [(1,47),(2,48),(3,45),(4,46),(5,42),(6,43),(7,44),(8,41),(9,54),(10,55),(11,56),(12,53),(13,29),(14,30),(15,31),(16,32),(17,60),(18,57),(19,58),(20,59),(21,36),(22,33),(23,34),(24,35),(25,50),(26,51),(27,52),(28,49),(37,62),(38,63),(39,64),(40,61)]])

50 conjugacy classes

class 1 2A···2G2H···2S4A···4X4Y···4AD
order12···22···24···44···4
size11···14···42···24···4

50 irreducible representations

dim1111111224
type+++++++++
imageC1C2C2C2C2C2C2D4C4○D42+ 1+4
kernelC2×Q86D4C2×C4×D4C2×C4×Q8C2×C4⋊D4C2×C41D4Q86D4C22×C4○D4C2×Q8C2×C4C22
# reps13163162882

Matrix representation of C2×Q86D4 in GL5(𝔽5)

40000
04000
00400
00040
00004
,
10000
01000
00100
00024
00003
,
40000
04000
00400
00030
00022
,
10000
00100
04000
00043
00011
,
40000
00100
01000
00012
00004

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,4,3],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,3,2,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,3,1],[4,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,4] >;

C2×Q86D4 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes_6D_4
% in TeX

G:=Group("C2xQ8:6D4");
// GroupNames label

G:=SmallGroup(128,2199);
// by ID

G=gap.SmallGroup(128,2199);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,184,570,136]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽